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Abstract 

Portfolio optimization is a major activity in any operating business. Conventional portfolio 

optimization research makes simplifying assumptions; for example, they assume no constraint in 

how many assets one holds (cardinality constraint). They also assume no minimum and maximum 

holding sizes (holding size constraint). Once these assumptions are relaxed, conventional methods 

become inapplicable, and hence new methods are needed to tackle this challenge. Threshold 

Accepting is an established algorithm in the extended portfolio optimization problem.  In this 

paper, an algorithm called Guided Local Search (GLS) is applied using an accurate and efficient 

designed hill climbing algorithm, named HC-C-R. GLS sitting on HC-C-R is for the purpose of 

solving the extended portfolio optimization problem. The improved hill climbing algorithm is 

tested on standard portfolio optimization problem. Results are compared (benchmarked) with the 

Threshold Accepting (TA) algorithm, a well-known algorithm for portfolio optimization and are 

also compared with its original algorithm HC-C-R. Results show that GLS sitting on HC-C-R is 

more effective than HC-C-R and the algorithms are more effective than TA. 

 

Keywords: Portfolio Optimization, Algorithm, Guided Local Search, GLS, Threshold 

Acceptance. 

 

Introduction 

The portfolio optimization problem is a 

problem concerning asset allocation and 

diversification for maximum return with 

minimum risk. The problem is to find the 

portfolio weights, i.e. how to most 

appropriately distribute the initial wealth across 

the available assets, in order to meet the 

investor’s investment objectives and 

constraints (Markowitz 1952, Markowitz 1959, 

Meucci 2005, Maringer 2008). 

Markowitz (1952) came up with a 

parametric optimization model for the problem 

of asset allocation and diversification for 

maximum return with minimum risk, which 

has become the foundation for Modern 

Portfolio Theory (MPT) or Markowitz theory 

or Mean-Variance model. To apply the 

Markowitz model to practical problems using 

the standard/traditional methods like quadratic 

programming, strong assumptions and 

simplifications of the real market situations 

have to be made.  

Markowitz model considers what is termed 

as standard portfolio optimization. In the 

standard portfolio optimization problem, the 

constraints taken into account are budget and 

no-short selling. In reality however, portfolio 

optimization has realistic constraints to be 

incorporated, such as holding sizes, cardinality, 

transaction costs, portfolio size or additional 

requirements from investors and authorities. 

When these realistic constraints are added to 

portfolio optimization, the problem quickly 

becomes too complex to be solvable by 

standard optimization methods. When the 
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assumptions and simplifications of the real 

market situations are relaxed and realistic 

constraints added, now we have an extended 

portfolio optimization problem. Here the 

Markowitz solution and the conventional 

methods like quadratic programming become 

inapplicable. Heuristic methods are usually 

used to deal with this extended portfolio 

optimization problems (Dueck and Winker 

1992, Streichert and Tamaka-Tamawaki 2006, 

Maringer 2008, Gilli and Kellezi 2000, Crama 

and Schyns 2003, Muralikrishna 2008). The 

most established heuristic algorithm used in 

extended portfolio optimization problems being 

Threshold Accepting (Maringer 2005, Winker 

and Maringer 2007, Gilli and Kellezi 2000, 

Winker 2001, Gilli and Schumann 2010, Gilli 

and Schumann 2012). The new algorithm 

proposed below is benchmarked with 

Threshold Accepting algorithm under standard 

portfolio optimization problem. 

 

The objective 

The objective of the research was to produce 

more effective and more efficient heuristic 

algorithm for the extended portfolio 

optimization problem. In this research, a 

heuristic algorithm is designed, investigated 

and then applied to portfolio optimization 

problem under some constraints of the market. 

The produced algorithm is implemented in 

solving the standard portfolio optimization 

problem. The problem is to find the portfolio 

weights, i.e. how to distribute the initial wealth 

across the available assets, in order to meet the 

investor’s objectives and constraints. The 

significance of the research lies in efficient 

portfolio selection/optimization and also in 

efficient investment management (Markowitz 

1959). 

 

Modern Portfolio Theory (MPT) or 

Markowitz Theory or Markowitz Model 

Markowitz’s standard portfolio optimization 

model (Markowitz 1952, Markowitz 1959) is a 

mathematical framework for describing and 

assessing return and risk of a portfolio of 

assets, using returns, volatilities and 

correlations. Markowitz (1952) introduced 

what is known as the mean-variance principle, 

where future returns are regarded as random 

numbers and expected value (mean) of the 

returns E(r) and their variance (whose square 

root is called standard deviation/ risk) capture 

all the information about the expected outcome 

and the likelihood and range of deviations from 

it (Markowitz 1952, Markowitz 1959). 

 

Objective function 

In the standard Markowitz model, Equation (1), 

(2) and (3) under basic constraints (4) and (5), 

the goal is to maximize the expected return, R, 

while diminishing incurred risk,  (measured 

as standard deviation/variance) (Markowitz 

(1952).  

Given return (Rp) of a portfolio and variance 

(
2
p) of portfolio, the equation to maximize is  

Max (.E (Rp) – (1- ).
2

p)    (1) 

Subject to 

 Expected return: 

𝐸(𝑅p) = ∑ 𝑤𝑖𝑖 E(𝑅𝑖)     (2) 

 Portfolio return variance: 


2
p=∑ ∑ 𝑤𝑖𝑤𝑗𝑖𝑗𝑗𝑖 

𝑖𝑗
     (3) 


𝑖𝑗

= 1  for i = j 

 Constraints: 

∑ 𝑤𝑖 = 1𝑖      (4) 

0 ≤ 𝑤𝑖 ≤  1     (5) 

Where the expected return of each asset 

is 𝐸(𝑅𝑖), each asset variance is 𝑖 , and each 

asset weight is 𝑤𝑖 . 

From the Equation (1), the trade-off 

between return (Rp) and risk (p) of portfolio is 

reflected. The efficient line/frontier is then 

identified by solving the above problem for 

different values of (0, 1): If  = 1 the model 

will search for the portfolio with highest 

possible return regardless of the variance. With 

 = 0, the minimum variance portfolio (MVP) 

will be identified. Higher values of   put more 

emphasis on portfolio’s expected return and 

less on its risk. (Markowitz 1952). Equations 

(4) and (5) are the constraints on the weights 

that they must not exceed certain bounds. The 

most important constraints are budget and 

return constraints since they characterize the 
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main part of the portfolio problem (Di Tollo 

and Roli 2008). The return constraint is when 

the investor requires a certain level of profit 

from his investment with minimum risk. The 

budget constraint is when the investor has to 

invest all the money/capital in the portfolio. 

However, return constraints can only be 

satisfied for a historical portfolio (Sharpe 2000, 

Korn 1997, Prigent 2007, Markowitz 1952 and 

Markowitz 1959). 

 

Characteristics of heuristic optimization 

techniques 

The core of heuristic methods is an iterative 

principle that includes stochastic elements in 

generating new candidate solutions and/or in 

deciding whether these replace their 

predecessors while still incorporating some 

mechanisms that prefer and encourage 

improvements (Maringer 2008, Winker and 

Maringer 2007, Glover and Kochenberger 

2006, Voudouris et al. 2010). They seek to 

converge to the optimum in the course of the 

iterated search. They are flexible and not so 

restricted to certain forms of constraints (Gilli 

and Kellezi 2000, Winker 2001, Gilli and 

Winker 2008, Gill et al. 2011). Heuristic 

techniques solve optimization problems by 

repeatedly generating new solutions and testing 

them. The stopping criterion of the heuristic 

algorithms is usually a fixed number of steps or 

if the quality of the solution does not improve 

after a given or specified number of iterations 

or both (Winker and Maringer 2007). 

Therefore, heuristic techniques address 

problems with a well-defined objective 

function and model (Maringer 2008). 

 

Summary on some of heuristic portfolio 

optimization techniques 

Simulated annealing (Kirkpatrick et al. 

1983) is a type of local search algorithm that 

accepts all new points that are superior to the 

current solution according to the objective 

function, but also, with a certain probability, 

and accept inferior points. By accepting 

inferior points, the algorithm avoids being 

trapped in local minima, and is able to explore 

more widely for better solutions. The 

probability of accepting an inferior point 

decreases over time, following a cooling 

schedule on the “temperature”. When the 

temperature falls to 0, Simulating Annealing 

behaves exactly like hill climbing. It has been 

applied for portfolio selection (Muralikrishna 

2008), and with constraints and trading 

restrictions according to Crama and Schyns 

(2003). 

Threshold Accepting (TA) (Dueck and 

Scheuer 1990 and Winker and Maringer 2007) 

can be seen as a variation of simulated 

annealing, except that there is no introduction 

of temperature. Instead of accepting inferior 

new points with a certain probability, it accepts 

only the points that fall below a fixed 

threshold. TA was originally proposed by 

Dueck and Scheuer (1990) as a deterministic 

and faster variant of the original Simulated 

Annealing algorithm. As Threshold Accepting 

avoids the probabilistic acceptance calculations 

of simulated annealing, it may locate an 

optimal value faster than the actual simulated 

annealing technique. In Threshold Accepting 

algorithm, the best solution obtained depends 

on some parameters such as the initial 

threshold value, the threshold decreasing rate 

and the number of permutations. The initial 

threshold and threshold decreasing rate are 

fixed such that a number of iterations can be 

carried before the algorithm stops (Winker and 

Maringer 2007). 

In this paper, Threshold Accepting is used 

as a benchmark algorithm to the proposed hill 

climbing algorithms in solving the standard 

Markowitz model. 

 

Materials and Methods 

The objective of the paper is to produce more 

effective and more efficient heuristic algorithm 

for the extended portfolio optimization 

problem. 

 

Design of HC-C-R 

In the design of the method/algorithm HC-

C-R, the following is a representation of the 

solution. As an approach, a solution is 
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represented by a vector of numbers (yi, …,yn). 

The element in position i represents the relative 

weight of the capital invested in stock i. The 

vector of numbers (yi, …,yn) are normalized to 

make sure that the weights in all the assets add 

up to 1.  

The percentage/weight to be invested in 

stock i is xi, where: xi = yi/ ∑ 𝑦𝑖
𝑛
𝑖=1  

One advantage of using this representation is 

that the vector, y, may take any number 

without violation of budget constraint that the 

weights add up to 100%. 

 

Neighbourhood function for the hill 

climbing algorithm (HC-C-R) 

The neighbourhood function of HC-C-R 

involves Thresh hold Percentage (ThP) to be 

reduced over time. ThP is a small percentage 

by which elements of y will be varied to get the 

next neighbour. In other words, it searches the 

neighbourhood with finer and finer steps. The 

following, HC-C-R algorithm is proposed for 

portfolio optimization.  

Elements of vector y are randomly 

generated. The number of elements of y is 

equal to number of asset/stocks.  The randomly 

picked position in y is denoted as pos. ThP is a 

small percentage, which we refer to as 

threshold percentage, by which elements of y 

will be varied to get the next neighbour. 

The sequence of all the positions of the 

elements of initial random solution y is 

randomized (so that the elements are not 

sequentially picked). If first position in the 

random sequence gives no better solution, next 

position is picked and so on. Thus, HC-C-R 

searches a larger space. This will potentially 

help it to find better solutions. The cost of 

doing so is increased time. 

The randomly picked position in y is 

denoted as pos. The neighbourhood definition 

is to pick one position (pos) in the current 

solution. After picking the random position in 

the current solution, one neighbour is obtained 

by adding ThP to that position and another is 

obtained by subtracting ThP to the same 

position. This gives two neighbours (two 

possible candidate solutions) at a time to be 

compared with the current solution, at random 

order. The first better candidate solution 

(neighbour) to be picked becomes the current 

solution out of the possible candidate solutions. 

On getting a better solution, the sequence of the 

positions of the elements of y is again 

randomized.  The overall procedure is repeated 

for a number of iterations, or until local 

maximum. In HC-C-R, ThP is reduced over 

time. That is after a pre-set number of iterations 

or on reaching local maximum, ThP is 

repeatedly reduced to be half the previous 

value until it reaches the pre-set minimum ThP 

value, denoted as minThP. 

Given mean returns of all stocks in column 

vector denoted as retasset, given assets’ co-

variances/deviations matrix, denoted as dev, 

and given  as the level of risk aversion; Figure 

1 is the procedure for HC- C-R. Function in 

Figure 2 is to search for better neighbouring 

solution. 
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Pseudo code for HC-C-R 

Procedure HC-C-R (ThP, minThP, , retasset, 

dev) 

     Randomly generate initial current solution y 

Begin 
Do While ThP>minThP 

Repeat 

pick random position, pos, in current solution y 

yplus = y 

yminus = y 

 yplus(pos) =  yplus(pos)*(1 + ThP) 

yminus(pos) = yminus(pos)*(1 - ThP)          

yb4=y 

y = move_to_neighbour (y, yplus, yminus, , 

retasset, dev)    

Randomly change the sequence of the positions           

                while y=yb4 do   

 

yplus = y 

yminus = y  

yplus(pos) =  yplus(pos)*(1 + ThP)   

      yminus(pos) = yminus(pos)*(1 

- ThP) 

        if  (all positions in the sequence have 

been checked for better solution)  then  break while 

loop  

end if 

end  while 

Until halting criterion is met 

ThP=ThP/2 

End While 

End 

 

 

 

 

 

 

 

%Generate yplus from current solution% 

%Generate yminus from current 

solution% 

% Get neighbour of current solution. % 

%Get second neighbour of current soln% 

% keep record of current solution y % 

% Pick a better neighbour solution. % 

 

% Provides randomness. % 

% Looks for better solution in the random 

sequence. (pos) is any position. % 

% Generate yplus from current 

solution % 

%Generate yminus from current 

solution% 

% Get neighbour of current solution. % 

%Get second neighbour of current soln% 

 

 

 

 

 

 

% Halting criterion was no neighbour is 

better than current solution or maximum 

number of iteration is reached. 

Figure 1: Hill climbing procedure of HC- C-R. 
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Pseudo code for a function for searching for better neighbouring solution 

Function move_to_neighbour (y, yplus, 

yminus, , retasset, dev) 

Begin 

 x𝑖=yi/ ∑ yi
n
i=1  

xplusi = yplusi/ ∑ yplus𝑖
𝑛
𝑖=1   

xminusi = yminusi/ ∑ yminusi
n
i=1   

xvalue = objectvalue (x, , retasset, dev)

  

xplusvalue = objectvalue (xplus, , 

retasset, dev) 

xminusvalue = objectvalue (xminus, , 

retasset, dev)   

if  xplusvalue>xvalue then y=yplus 

end if 

if xminusvalue>xvalue then y=yminus 

end if 

return y 

End 

 

 

 

% Find weights, x, of all the assets n in portfolio% 

% Find weights, xplus, of all assets n % 

% Find weights, xminus, of all assets n% 

% Calculate objective value of portfolio x and 

denote as xvalue. % 

% Calculate objective value of portfolio xplus and 

denote as xplusvalue% 

%Calculate objective value of portfolio xminus and 

denote as xminusvalue. % 

% Return yplus if it is better than y. % 

 

% Return yminus if it is better than y. % 

 

Figure 2: Function to search for better neighbouring solution. 

 

The function in Figure 3 measures the 

quality of a portfolio. The function calculates 

the objective/objective value from Equation 

(1). The mean returns and co-variances of all 

assets/stocks are initially calculated from the 

daily prices in the main program. They are used 

to calculate the expected return and risk of a 

portfolio. The return and risk of a portfolio 

calculated are used to measure the quality of a 

portfolio. 

 

 

Pseudo code for calculating objective function value 

Function object value (x, , retasset, dev) 

Begin 

retpor t = scalar/dot product(retasset, x) 

  risk = x*dev*x’    

fitvalue = *retport – (1 - )*risk  

return fitvalue 

End 

 

 

%Calculate effective expected return % 

% Calculate effective risk/variance % 

%Calculate objective/objective value 

according to equation (1) above. % 

Figure 3: Function to calculate objective/fitness value. 

 

Application of GLS 

Below is the pseudo code of Guided Local 

Search, GLS (Voudouris et al. 2010) method 

applied in finding the optimum portfolio of n 

assets. Figure 4 shows GLS application using  

HC-C-R. 
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Pseudo code of GLS 

Procedure Guided Local Seach (p, g, λ , [I1, . . . , IM], 

[c1, . . . ,cM], M) 

Begin 

k=0; 

s0 is randomly generate initial solution (p); 

for i=1: M do 

pi =0; 

h=g+ *∑ pi *Ii; 

while Stopping criterion do 

begin 

sk+1 =Hill-climbing method HC-C-R (sk,h);    

for i=1: M do 

utili =Ii(sk+1) ∗ci/(1+ pi); 

for each i such that utili is maximum do 

pi = pi+1; 

k=k+1; 

end 

s∗ is best solution found with respect to objective function g; 

return s∗; 

End 

 

 

 

 

 

% set all penalties to 0 % 

% define the augmented 

objective function % 

 

%the method HC-C-R is 

described figure 1 above% 

% compute the utility of 

features % 

/% penalize features with 

maximum utility % 

Figure 4: Procedure of GLS. 

 

Where p is the problem, g is the objective function, h is the augmented objective function,   is a 

parameter, Ii is the indicator function of feature i, ci is the cost of feature i, M is the number of 

features, pi is the penalty of feature i,. 

 

Results  

Benchmarking the Algorithms using 

Threshold Accepting 

HC-C-R and GLS are benchmarked on the 

Markowitz model, Equations (1), (2), and (3) 

under basic constraints (4) and (5). They are 

tested on 100 assets portfolio. The results are 

compared with Threshold Accepting, which is 

a well-established Hill Climbing algorithm in 

portfolio selection and optimization. 

The assets and their return data used for 

applications in the algorithms are from DAX 

stock exchange. The data used were daily 

returns over 1001 days. 

The following are the algorithms that are 

evaluated: 

HC-C-R: HC-C with reducing ThP  

GLS: Guided Local search  

 

The following are the explanations of 

notations of the algorithms used in presenting 

results: 

HC-C-R (0.1, 0.01, 9e+5) is HC-C-R with 

starting ThP = 0.1, half ThP every 9e+5 

iterations, until ThP is below 0.01. The above 

number of iterations was given on every ThP 

but the program was to stop on reaching a local 

optimum. 

GLS (700): Guided Local Search with 700 

iterations sitting on HC-C-R (0.1, 0.01, 500). 

Table 1 shows experimental results on the 

portfolio optimization on 100 stocks from 

DAX stock exchange; taken after 100 runs. The 

results show the values of objective function, 

number of functional evaluations required to 

reach final objective value, and average time in 

seconds for one run to converge to local 

maximum (final solution). The Best Final 

Objective value is the highest objective 
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function value obtained in all 100 runs. Final 

objective values obtained in each run were 

recorded and so below are the mean, standard 

deviations (STD) and Worst of Final objective 

values in all the 100 runs. The mean and STD 

of number of functional evaluations to reach 

final objective value, of the 100 runs, are also 

given. 
 

Table 1: Experimental results on portfolio optimization on 100 stocks, after 100 runs 

Algorithm  GLS (700) 

(on HC-C-R (0.1, 

0.01, 500)) 

 HC-C-R (0.1, 

0.01, 9e+5) 
Threshold  

Accepting 

(9e+5) 

Best final objective value  0.000596 0.000596 0.000588 

Final objective value Mean 

STD 

Worst 

0.000596 

1.4e-10 

0.000596 

0.000595 

3.32e-6 

0.000572 

0.000563 

3.46e-5 

7.2563e-5 

No. of functional 

evaluations to final 

objective value 

 

Mean 

STD 

 

2.1e+5 

2.8e+3 

 

3.2e+4 

943 

 

3.0e+5 

1770 

Average time for 1 run (sec)  43.37 28.05 704.7 

STD = Standard Deviation 

 

Discussion 

 GLS and HC-C-R are better than TA: GLS 

on HC-C-R and HC-C-R managed to attain 

higher best final objective value (0.000596) 

than Threshold Accepting (0.000588). The best 

final objective values are higher and similar in 

GLS and HC-C-R, showing that the methods 

are more robust than Threshold Accepting as 

they better escape local optima.  

To understand the significance of the 

difference in final objective value we look at 

the best final objective value of HC-C-R which 

is 0.000596. This translates to a return of 

0.14% and a risk of 1.34% one day after 

investment, of the 100 stocks considered. The 

best final objective value of Threshold 

Accepting, 0.000588, translates to a return of 

0.13% and a risk of 1.54% one day after 

investment. The following days could include 

compounded interest on the original capital. 

From the return and risk figures, it is observed 

that you incur more risk but expect less return 

when you use the Threshold Accepting rather 

than HC-C-R to find an optimal portfolio.  

The mean of final objective value of HC-C-

R is higher (0.000595) than that of Threshold 

Accepting (0.000563). The worst final 

objective of HC-C-R is a lot better (0.000572) 

than that of Threshold Accepting (7.2563e-5). 

The STD of mean of final objective value of 

HC-C-R(3.32e-6) is 10 times less that of 

Threshold Accepting (3.46e-5). 

The number of functional evaluations for 

HC-C-R was 3.2e+4 while that of Threshold 

Accepting was 3.0e5. HC-C-R was faster as it 

required less number of functional evaluations. 

The STD of the number of functional 

evaluations of HC-C-R (943) is less than that 

of Threshold Accepting (1770). Considering 

the time in seconds for one run to converge to 

best final objective value, Threshold Accepting 

(704.7), required more time than HC-C-R 

(28.05). This shows that it is far more 

expensive (time wise) to compute 

neighbourhood function of Threshold 

Accepting than that of HC-C-R. 

A t-test was performed on final objective 

values and on the number of functional 

evaluations to final objective of the 100 runs. 

Both outcomes displayed a rejection of the null 

hypothesis at the 5% (default value) 

significance level. The t-test was performed 

using Mat-lab (R2010a). 

Furthermore, to use Threshold Accepting, 

one has to first calculate and sort threshold 

sequences according to a certain problem. 

These are the sequences by which poor 

solutions will be accepted to avoid being 
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trapped in a local optimum. The process makes 

Threshold Accepting quite cumbersome.  

GLS is better than No GLS: By adding 

penalties every time there was a local optimum, 

GLS managed to attain the best final objective 

value in all 100 runs. The mean of the final 

objective value is the same as the value of best 

final objective value, that is 0.000596, and the 

STD of the mean of the final objective value is 

exceedingly small (1.3997e-10). The worst 

final objective value was also the same as the 

best final objective value (0.000596). This 

demonstrates that GLS on HC-C-R was better 

in reliability to find best final objective value 

than HC-C-R as HC-C-R attained lower mean 

of final objective value (0.000595) and the 

worst final objective value was a lot lower than 

that of GLS. 

The overall results demonstrate that GLS 

(sitting on HC-C-R) manages to find better 

solutions (higher mean of the final objective 

value) than HC-C-R and TA. 

Following the results of the experiments above 

on benchmarking the algorithms with TA are 

summarized in a Table 2. 

 
 

Table 2: Summary on benchmarking the algorithms with TA 
 

Algorithm Effectiveness Efficiency 

 

TA 

(Dueck and Cheuer 

1990) 

Well established algorithm in portfolio 

optimization (Winker 2001, Radziukynienė 

and Žilinskas 2008, Gilli and Schumann 

2010, Hoos and Tsang 2006, and Gilli and 

Schumann 2012) 

Efficient 

 

HC-C-R 

 

 

More effective in finding better solution 

than  TA 

More efficient  than TA 

and more efficient  than 

GLS (Voudouris et al. 

2010) (sitting on HC-C-R) 

GLS (Voudouris et 

al. 2010) (sitting on 

HC-C-R) 

More effective and reliable in finding better 

solution than HC-C-R 

More efficient than  TA 

 

Conclusion 

GLS and HC-C-R have been described and 

implemented in portfolio optimization 

problem. They were tested on the Markowitz 

model; in finding weights for 100 stocks in 

portfolio optimization, where a budget 

constraint is imposed and no short-selling is 

permitted. The results demonstrate that GLS 

sitting on HC-C-R manages to find better 

solutions than the other algorithms. The small 

standard deviations observed show that GLS 

and HC-C-R find solutions more robust than 

Threshold Accepting with GLS able to find 

best final objective value in all 100 runs. In 

future more realistic, non-linear constraints like 

transaction costs will be incorporated. The hill 

climbing algorithms are also quite easy to 

understand and to implement. So these 

algorithms also have wider application areas 

other than portfolio optimization, for instance, 

in different research areas of science. Also the 

hill climbing algorithms will be combined with 

evolutionary algorithms like genetic 

algorithms, to give hybrid algorithms for 

portfolio optimization and other applications. 
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