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Abstract 

This is a study of  Bayesian quantile regression that broadly considered the estimation of 

regression quantiles in the presence of autocorrelated error. Regression models are based on 

several important statistical assumptions upon which their inferences rely. Autocorrelation of the 

error terms violates the ordinary least squares regression assumption that error terms are 

uncorrelated which invalidate Gauss Markov theorem. This study designed schemes for estimation 

and making inference of regression quantiles in the presence of autocorrelated errors using 

Bayesian approach. Bayesian method to quantile regression models regards unknown parameters 

as random variables and the parameter uncertainty was taken into account without relying on 

asymptotic approximations.The empirical analysis used  the data set from Central Bank of Nigeria 

bulletin which comprised of Nigeria GDP growth, export rate, import rate, inflation rate and 

exchange rate from the period of 1985–2018. Bayesian inferences with autocorrelated error in the 

framework of quantile regression accounted better for the variability in the distribution of 

autocorrelation and gave robust and less biased estimates in dealing with non normality and non 

constant variance assumptions, the results of the research reported minimal Mean Square Errors in 

Bayesian approach than classical approach across the entire distribution. 

 

Keywords: Bayesian Estimation, Regression Quantiles, Autocorrelated Errors, Regression 

Analysis. 

 

Introduction 

In regression analysis,  the researcher is 

interested in analyzing the conduct of a 

dependent variable    given the information 

contained in a set of explanatory variables   , 

however, performing a regression does not 

spontaneously yield a reliable relationship 

between the variables but selecting an 

estimator that gives best parameter estimates. 

Regression analysis seeks to find the 

relationship between a dependent variable  

and one or more independent variables, 

certain widely used strategy of regression 

such as ordinary least squares method has 

applauding properties if the underlying 

assumptions are true, but can give 

inappropriate inference and misleading 

decisions if those assumptions are not true; 

thus ordinary least squares is  not robust to 

violations of its assumptions (Andersen 

2008). 

Autocorrelation of the error terms 

breaches the ordinary least squares regression 

assumption that error terms are uncorrelated, 

hence ordinary least squares no longer have 

the minimum variance property, hence 

invalidate Gauss Markov theorem. Regression 

models with correlated errors have been 
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thecentre of significant attention in 

econometrics and statistics. Gujarati (2003) 

pinpointed several ways in which 

autocorrelation may be introduced; which 

include inertia, specification bias, excluded 

variables, transformation of the original 

model and manipulation of data. Shadish et 

al. (2013) worked on Bayesian estimate of 

autocorrelation in single case designs, the 

article proposed procedures of obtaining 

empirical Bayes estimates of autocorrelation 

only in mean regression model. The central 

location, the scale, the skewness, and other 

higher-order properties not central location 

alone characterize a distribution, thus mean 

models are inherently ill-equipped to depict 

the relationship between a response 

distribution and predictor variable. Since the 

groundbreaking work of Koenker and Bassett 

(1978), quantile regression models have been 

increasingly used in applied areas in 

economics due to their flexibility to allow 

researchers to investigate the relationship 

between economic variables not only at the 

centre, but also over the entire conditional 

distribution of the dependent variables. 

Theoretical results established that ordinary 

least squares regression models could be 

deficient if the probability distribution of the 

observed response variables do not follow a 

symmetric distribution (Min and Kim 2004). 

Quantile regression was able to tackle this 

problem since it turns out to be a better 

alternative for accommodating outliers and 

misspecification of the error terms. Bind 

(2016) studied quantile regression analysis of 

distributional effects of air pollution on blood 

pressure heart rate variability, blood lipids, 

and biomarkers of inflammation in American 

men. Koenker and Machado (1999) 

discovered the linkage between the quantile 

regression loss function and assymetric 

Laplace distribution. 

Application of quantile regression appears 

in Yu and Moyeed (2001) and Tsionas 

(2003), which specify a Bayesian quantile 

regression model with independent and 

identically distributed asymmetric Laplace 

error terms, the posterior means  were 

simulated using the Mefropolis Hasting 

algorithm which invalidate the estimates to be 

best linear unbiased estimates. Alhamzawi et 

al. (2012) worked on Bayesian regularized 

quantile regression with lasso by allowing 

different penenalization parameters for 

different regression coefficients. This study 

will fill the vacuum in the literature by 

examining the estimation of Bayesian 

quantiles regression models with serially 

correlated error using Gibb’s sampling 

techniques. Bayesian inference in the context 

of quantile regression was achieved by 

adapting the problem to the framework of the 

generalized linear model using the 

asymmetric Laplace distribution for the error 

terms with Txy   as proposed by Yu and 

Moyeed (2001). 

Bayesian methods do not need to be 

tested for their sampling properties (Gelman 

2008), instead they are concerned with the 

facts that the correct likelihood and prior are 

employed for Markov Chain Monte Carlo 

(MCMC) methods converge to the implied 

posterior distribution. This current research 

adopted a Bayesian approach to estimate the 

regression quantiles with correlated errors 

across the entire distribution. 

 

Materials and Methods 

In this section, the methods involved in 

the estimation of regression quantiles and 

Bayesian estimation of regression quantiles 

with autocorrelated error in the model are 

described. 

 

Method of estimating regression quantiles 

Let ,t

T

tt xy     (1) 

nt ,...,1  

Where ty  be  response variable and ,tx  a 

1k  vector of covariates for the tht

observation. t  is the error term whose 
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distribution is restricted to have th  quantile 

equal to zero, that is  




 


tt dF )(

0

  (2) 

  ,   = 1,…, n be a response variable and   , a 

  x 1 vector of covariates for the     

observation. 

let )( txQ  denote tht  )10(   quantile 

regression function of ty  given tx . The 

relationship is 



')( tt xxQ       (3) 

where   is a  vector of  unknown 

parameters of interest, quantile regression 

estimation of    proceeds by minimizing  







n

t

ttR
xyk

1

' )(minargˆ
        (4) 

Where the loss function   is simplified as   

}]0{[)(  uIu        (5) 

and the model’s residuals are formulated as 

an indicator function with 

  { } = ,
                       
                         

-     (6) 

The quantile ̂  is the th  regression 

quantile. 

The loss function is not differentiable; 

solutions to the minimization cannot be 

derived explicitly. Linear programming 

method in ‘R’ was designed to obtain quantile 

regression estimates for   ̂  using the simplex 

iteration procedure of Koenker and d'Orey 

(1994), the minimum was obtained at the 

vertices of the feasible region.  

 

Bayesian estimation of regression quantiles 

with autocorrelation  

Considering the regression model 

t
T
tt XY   )(  (7) 

Where: t  =


 
p

j

tjtj u
1

  (8) 

For t = 1,…, n,     is the q dimensional 

predictors,    follows independently identical 

normal with mean 0 and variance   .
j , j = 

1,…,p is the autocorrelation coefficient of 

order p which determines the dependency of 

the error term 
t .   

In contrast to the standard linear 

regression model, the error terms are 

correlated. Estimating the parameters in the 

model (7) is to transform it as follows: 
***

)( )( t
T

itt uXy     (9) 

Where   
  and    

  represent the following 

transformed variable: 

tt yy 2* 1    (10) 

for t = 1,2,3 …, n 

and  

1
*

 ttt XXX     (11) 

     for t = 2, 3, 4,…, n       

the model inference theoretically requires the 

initial values (           and (         , 

noting that error term    are independent 

normal, the assumption that errors are 

independent over all individual and time 

periods implies that the transformed model 

simply reduces to the standard linear 

regression framework, the density can be 

expressed as  

),,,( *

1

* tt Xyf

=
 

(     (          *
 (  

    
    (  

    
   

   +     (12) 

Where   is the autocorrelation coefficient of 

order one and   
 and   

  are the (t-p) x q 

dimensional matrix and t-p dimensional 

vector, respectively which depend on 

autocorrelation coefficient  . 

Bayesian implementation with quantile 

regression begins by erecting a likelihood, the 

error term in equation (9) is assumed to 

follow the asymmetric Laplace distribution. 

Adopting the method of Kozumi and 

Kobayashi (2011), the asymmetric Laplace 

distribution was allowed to be represented as 



Tanz. J. Sci. Vol. 46(1), 2020 

79 

 

a location of scale mixture of normal 

distribution 

       
 )( + iz  + ).( iiuz

    
(13) 

where the mixing distribution follows an 

exponential distribution in equation (13)  for 

effective and easy draw. 

where  iz  + ).( iiuz  is the error term 

expressed as a location of scale mixture of 

normal distribution. 

A scale parameter    was introduced into the 

model in equation (13) given as 

 

  
  (  

     
     (          √         (14) 

Re-expressing equation (14) in terms of the 

parameter for easy sampling gives; 

  )(**

)(  i

T

itt Xy      √         (15) 

This leads to the likelihood function 

 (  
 |  

           exp
 ∑ (  

    
  (      

  
   

      
 ∏

 

   
        (16) 

 To proceed in the Bayesian analysis, 

conjugate prior for  ,, and v was chosen 

separately. 

Prior of     (             (17) 

where       are the hyperparameters of    

prior chosen from normal distribution at 

various chosen quantiles. 

For the prior on  ,  inverse gamma 

distribution I G(a,b), inv Gamma(shape = ,0n   

scale = ,0s  was chosen with density 

 















x

s
x

n
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snxf

n

n

01

0

0

00 exp),( 0

0

      (18) 

The posterior distribution for   follows an 

inverse Gamma distribution 

  vyt ,,      )
22

(
 sn

IG          (19) 

The prior of i  follows a generalized inverse 

Gaussian distribution 

iv   ,,,ty
 
  ),,

2

1
( iiGIG     (20) 

where the probability density function of 

),,( vGIG is given by    









  )(

2

1
exp

)(2

)(
),,( 2121 xxx

kv
vxf v

v







  (21) 

,0x  , v  0,  , and 

)(kv  is a modified Bessel function of the 

third kind. 

However, the posterior distribution for i  

still follows a generalized inverse Gaussian 

distribution 

iv   ,,ty     ),,
2

1
( iiGIG       (22) 

The posterior of  depends upon its prior 

that reflects the research’s non data 

information. The improper prior of 
follows a multivariate normal truncated to the 

stationary region 

 ()( If    )    (23) 

The probability distribution is denoted by 

  
 

(  (        (     
 

 

√    
  

 (
(     

        (          )
  

  (24)  

where )(  I is the indicator function 

which equals 1 for the stationary region and 

zero otherwise and   denotes stationary 

region for the model.  

Hence the conditional posterior density of 
given ,,,  is written as  

`TN ( )*2*
 nn V


  (25) 

Where:  TT

n EEE 1* )( 


              (26) 

and 
1* )(  EEV T

n                           
(27) 
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E is a (n-p) x k matrix, the n
th 

row given by 

pnn   ...1  and   denotes an n-p 

dimensional vector. 

However, drawing   from truncated 

multivariate normal was done by drawing 

from untruncated normal )( *2*

nn VN 


 and 

discard the draws which fall outside the 

stationary region. Combining the likelihood 

density in (16) with the prior 

specification                in equations  

(17), (18), (20) and (23). The joint posterior 

distribution of (          ) becomes 

 (       |         )   L((  |   
            

x joint priors of (          ). 

This yields the following full conditional 

posteriors 

[
 
 
 
 
  |           (     

 |            (
  

 
   

  

 
)

 |           (
 

 
      )

              ( ̂ 
       

    ]
 
 
 
 
 

 (28) 

The full conditional posterior distribution 

of  ,, and   is not of tractable form, 

therefore  MCMC method is employed using 

Gibb’s sampling to draw samples from the 

posterior. The Gibb’s sampler is an iterative 

Monte Carlo scheme designed to extract 

conditional posterior distribution from 

intractable joint distribution. Gibb sampler 

was run for 120,000 replications and 

discarded the first 20,000 as burn-in period. 

The Bayesian test considered the relevant 

posterior interval estimate. The test was 

performed separately for each , in the 

presence of autocorrelated error, which is 

then used for posterior inferences. MCMC 

sampling was carried out in R (R 

Development Core Team 2016), the Monte 

Carlo simulation was implemented by taking 

random draws from the posterior distribution 

of   and then averaging the appropriate 

functions of these draws across the quantiles 

range Model comparison was done between 

the frequentist and Bayesian methods. 

 

Empirical study 
To illustrate the estimation method of 

Bayesian quantile regression method 

empirically with autocorrelated error, the 

performance of the MCMC scheme proposed 

was checked considering the data set from 

Nigeria CBN bulletin which comprised of 

Nigeria GDP growth, export rate, import rate, 

inflation, and exchange rate from the period 

of 1985-2018. The response variable is the 

GDP growth, while the explanatory variables 

are the export, import, inflation and the 

exchange rate, using the model 

ty = o ttt xxx 321  

 

ttx   4   
(29) 

Where ty  = GDP growth, tx1  = import rate at 

time t, tx2   = export rate at time t, tx3  = 

inflation rate at time t and tx4  = exchange 

rate at time t, posterior estimates for     (   
for   = 0.05, 0.10,…, 0.95 quantiles using the 

Gibb’s sampling  were obtained,  where 

    was generated based on the assumption of 

ttt u 1  where    ~ N(0,    , where 

  
 =1,the value of   is an AR(1)  parameter 

autocorrelation coefficient which was 

determined through the estimation procedures 

from Cochrane Orcutt approach of estimating 

autocorrelation coefficient in regression 

model. 

 

Quantile regression model with 

autocorrelated error 

In most cases, time series data inherits 

autocorrelation, this property was verified in 

the quantile regression models with Ljung- 

Box test, this test was applied to residual from 

the fitted parametric quantile regression 

model in equation (29) at lag 1. The Ljung–

Box test examines the null of independently 
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distributed residuals, it was derived from the 

idea that the residuals of a correctly specified 

model are independently distributed. The test 

statistic is computed using the residuals of the 

regression quantiles estimates, the regression 

quantiles estimates for   ̂ . were estimated 

using the method of simplex iteration 

procedure of Koenker and d'Orey (1994). 

Mean square error was used as a criterion of 

validation to measure the relative 

effectiveness of  Bayesian quantile regression 

with autocorrelated error and classical 

quantile regression with autocorrelated error 

in exploring the data at th  quantile. 

 

Results and Discussion 

Table 1 below presents the posterior 

means and their standard deviations in 

parenthesis for the selected quantiles of 

Bayesian quantile regression with 

autocorrelated error (BQRWA) parameter 

estimates, the result obtained was based on 

the procedures itemized in the method of 

estimating regression quantiles with 

autocorrelated error using bayesian approach.  

All results were based on 120,000 

replications with 20,000 burn-in replications 

discarded and 100,000 replications retained. 

Furthermore, Bayesian estimation approaches 

were employed to simultaneously estimate the 

quantiles parameters and the serially 

correlated residual parameters. 

 

Table 1: The Bayes Estimates of the Bayesian quantiles regression parameters with auto-correlated 

error  

  0  
1  

2  3  
4    

0.05 0.4847 (0.03) 0.1410 (0.16) –0.2461 (0.07) –0.188 (0.49) 0.2030 (0.02) 0.0483 (0.19) 

0.10 0.7503 (0.24)  0.1088 (0.05) –0.1088 (0.10) –0.1467 (0.29) 0.0743 (0.04) 0.0619 (0.18) 

0.15 0.7838 (0.06) 0.0742(0.025) –0.101(0.013) –0.0439 (0.04) 0.0965 (0.17) 0.0587 (0.08) 

0.20 0.8539 (0.09) 0.0767  (0.11) –0.0916 (0.04) –0.0317 (0.165) 0.0620 (0.04) 0.0656 (0.122) 

0.25 0.8692(0.017) 0.0615 (0.01) –0.080(0.155) –0.0245 (0.03) 0.0599 (0.29) 0.0524 (0.006) 

0.30 0.8720 (0.5) 0.0507 (0.09) –0.0823 (0.26) –0.0121 (0.11) 0.0754 (0.39) 0.0472 (0.007) 

0.35 0.8913 (0.04) 0.0434 (0.08) –0.074 (0.017) 0.0019 (0.016) 0.0767 (0.002) 0.0524 (0.010) 

0.40 0.899(0.009) 0.0438(0.003) –0.083 (0.007) 0.009 (0.001) 0.0799 (0.025) 0.0481 (0.05) 

0.45 0.8985(0.012) 0.0380(0.057) –0.081(0.001) 0.0015 (0.048) 0.0887 (0.029) 0.0447 (0.04) 

0.50 0.8994 (0.03) 0.0243(0.018) –0.076 (0.021) 0.0129 (0.093) 0.1003 (0.008) 0.0431 (0.014) 

0.55 0.9016(0.027) 0.0182(0.061) –0.0792 (0.09) 0.0144 (0.028) 0.1117 (0.018) 0.0342 (0.063) 

0.60 0.8984(0.018) 0.0055(0.030) –0.070 (0.076) 0.0214 (0.024) 0.1237 (0.015) 0.0345 (0.094) 

0.65 0.9147(0.036) 0.0076 0.075) –0.081 (0.027) 0.0252 (0.052) 0.1190 (0.014) 0.0354 (0.078) 

0.70 0.9052(0.020) –0.019(0.069) –0.061 (0.051) 0.0306 (0.045) 0.1445 (0.011) 0.0227 (0.027) 

0.75 0.908 (0.036) –0.028(0.005) –0.073 (0.031) 0.0412 (0.024) 0.1558 (0.048) 0.0274 (0.099) 

0.80 0.9329(0.085) –0.035(0.011) –0.069(0.045) 0.0648 (0.081) 0.1735 (0.176) 0.0230 (0.029) 

0.85 0.9914(0.022) –0.056(0.063) –0.042 (0.010) 0.0636 (0.055) 0.1363 (0.028) 0.0109 (0.017) 

0.90 1.0534(0.013) –0.094(0.072) –0.005(0.084) 0.1448 (0.062) 0.0051 (0.081) 0.0368 (0.031) 

0.95 1.2091(0.046) –0.111(0.008) 0.0068 (0.015) 0.2478 (0.025) 0.0462 (0.07) 0.0411 (0.165) 
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Table 2: Quantiles parameter estimates using quantile regression with auto-correlated error  

  
0  1  

2  
3  4  

t  

0.05 1.2093 2.1594 –2.1440 –1.6620 –1.9562 3.3111 

0.10 1.2093 2.1594 –2.1440 –0.16620 –0.1956 3.0692 

0.15 1.1057 0.5990 –1.1185 –0.0663 0.0518 –1.1185 

0.20 0.9253 0.0768 –0.0941 –0.0352 0.0632 0.0617 

0.25 0.8814 0.0595 –0.0816 –0.0272 0.0584 0.0522 

0.30 0.8736 0.0512 –0.0831 –0.0137 0.0735 0.0475 

0.35 0.8853 0.0418 –0.0790 0.0026 0.0684 0.0516 

0.40 0.8754 0.0427 –0.0800 0.0006 0.0783 0.0460 

0.45 0.8618 0.0325 –0.0862 0.0025 0.0837 0.0482 

0.50 0.8792 0.0217 –0.0780 0.0173 0.1162 0.044 

0.55 0.8936 0.0210 –0.0752 0.0152 0.1219 0.0381 

0.60 0.8973 0.0050 –0.0715 0.0225 0.1305 0.0364 

0.65 0.9086 0.0072 –0.0831 0.0243 0.1475 0.0390 

0.70 0.9257 –0.0218 –0.0613 0.0307 0.1511 0.0261 

0.75 –0.019 –0.7163 0.0398 0.1610 0.1581 0.0199 

0.80 0.9408 –0.0316 –0.0597 0.0629 0.1742 0.0217 

0.85 0.9735 –0.0553 –0.0460 0.0613 0.1514 0.0162 

0.90 1.1446 –0.0901 –0.0018 0.1377 0.1426 0.0052 

0.95 1.0037 –0.1125 0.0624 0.2548 0.0481 0.0074 

 

The Ljung Box test statistic for the model 

in equation (29) is 165.0825 which has a p –

value of 148.1 e . since the p –value
 
is close to 

zero for the test statistic, it is concluded that 

the economic data has significant 

autocorrelation. The final estimate of 
obtained from the Cochraine Orcutt procedure 

is 0.70 which lies between 0 and 1 as 

expected for a   when autocorrelation is 

present. After fitting a parametric model to 

the numerical data, Table 2 comprises the 

frequentist estimates of the model obtained 

using the method of estimating regression 

quantiles highlighted above  and resampled 

error terms from the autocorrelated residuals 

using the empirical data. 

Table 3 above reports the MSE of 

Quantile regression model with autocorrelated 

error (QRWA) and Bayesian Quantile 

regression model with autocorrelated error 

(BQRWA) at various selected quantiles. 

Comparing the mean square error of the 

frequentist approach with the Bayesian 

approach in Table 3, it is revealed from 

empirical results that Bayesian approach 

produced minimal MSE which implies that 

the Bayesian approach in estimating 

regression quantiles in the presence of serially 

correlated error outperformed the frequentist 

approach in terms of MSE. 
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Table 3: MSE of Quantile Regression Model with Autocorrelated Error (QRWA) and Bayesian 

Quantile Regression Model with Autocorrelated Error (BQRWA) 
Quantiles QRWA BQRWA 

0.05 0.0258 0.0051 

0.10 0.0153 0.0046 

0.15 0.0607 0.0049 

0.20 0.0315 0.0026 

0.25 0.0720 0.0618 

0.30 0.0552 0.0049 

0.35 0.0376 0.0085 

0.40 0.0295 0.0068 

0.45 0.0361 0.0077 

0.50 0.0826 0.0020 

0.55 0.0945 0.0018 

0.60 0.0312 0.0025 

0.65 0.0364 0.0099 

0.70 0.0266 0.0012 

0.75 0.0436 0.0026 

0.80 0.0297 0.0032 

0.85 0.0610 0.0085 

0.90 0.0294 0.0011 

0.95 0.0233 0.0072 

 

Conclusion 
This study expatiated the estimation of 

quantile regression models using the Bayesian 

approach. The estimation of coefficients in a 

simple regression with autocorrelated errors is 

an important problem that has received a 

great deal of attention in econometrics. The 

research work measured quantile relations 

after allowing serial correlated error, using 

likelihood–based approach. It explored the 

predictive ability of a model on a data set that 

has autocorrelated errors which were used to 

fit the model. 

The work develops a practical framework 

for Bayesian analysis of regression models 

with autocorrelation. Compared to the 

frequentist estimate, the Bayesian method still 

performs better even when the error 

distribution assumption is violated. This 

research gives an insight into the methods of 

estimating regression quantiles in the 

presence of autocorrelated error. It is 

observed that when dealing with non-

normality and non-constant variance 

assumption, the performance of Bayesian 

quantile regression does not depend on 

autocorrelation level as the research reported 

minimal MSE across the entire quantiles with 

autocorrelated errors. The smaller mean 

square error in Bayesian estimation of 

regression quantiles in the presence of 

autocorrelated errors proves  that the data 

values are dispersed closely to its central 

moment and produces  minimal errors. The 

Bayesian approach in the framework of 

quantile regression gives robust and less 

biased estimates, the research justified the 

results of Shadish et al., (2013) that worked 

on the estimation of Bayesian estimates of 

autocorrelation in a single case design that 

concluded that Bayesian estimation reduces 

the role of sampling error.  
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