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Abstract 

In this paper, a novel blind channel estimator for Orthogonal Frequency Division Multiplexing 

(OFDM) affected by unknown impulsive interference is proposed. Unlike conventional 

subspace-based methods, this approach combines noise subspace decomposition with eigenvalue 

filtering to enhance interference suppression and improve channel estimation accuracy. The 

proposed technique ensures precise estimation of the covariance matrix, which is critical for 

reliable channel state information (CSI) retrieval. Moreover, by incorporating the presence of 

virtual subcarriers, the method further refines the estimation of channel response. Simulation 

results demonstrate that the proposed algorithm significantly outperforms existing subspace-

based estimators, particularly in highly time-varying wireless channels and low signal-to-noise 

ratio (SNR) conditions. These findings confirm the practical applicability of the method in next-

generation wireless networks like 5G and beyond, where robust and accurate channel estimation 

is essential for maintaining communication reliability under adverse conditions.   
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Introduction 

Orthogonal Frequency Division 

Multiplexing (OFDM) is recognized as a 

promising technology for broadband wireless 

networks (Rebouh et al. 2023). It has seen 

widespread adoption in wireless 

communications, including wireless LAN and 

digital video broadcasting-terrestrial (DVB-T) 

(Liu et al. 2022). In 2018, the Third 

Generation Partnership Project (3GPP) 

introduced 5G (fifth-generation mobile 

technology) as a new standard for cellular 

networks, replacing the previous standards of 

3G, 4G, and 4G LTE (Chen et al. 2023). The 

goal of 5G was to establish a new set of 

standards for devices and applications 

compatible with its network. Like its 

predecessors, 5G uses radio waves for data 

transmission (Sarwar et al. 2023). However, 

due to advancements in latency, throughput, 

and bandwidth, 5G networks can achieve 

significantly faster download and upload 

speeds, enabling a broader range of 

applications (Jin et al. 2023). Theoretical data 

rates for 5G Release 17 reach up to 100 Gbps 

for downlink (DL) and 1 Gbps for uplink (UL) 

(Boodai et al. 2023). 

OFDM is utilized in both DL and UL due to 

its capability to suppress frequency and time 

selectivity in channels (Ji et al. 2018, Manasa 

and Venugopal 2022). Channel estimates can 

be obtained using training symbols (Hussein et 

al. 2023) or through blind schemes (Bai and 

Bu 2004, Kawasaki and Matsumura 2022, 

Mehrabani et al. 2023). A popular class of 

blind channel estimators for OFDM systems 

involves subspace schemes (Li 2003), as 

explored in several studies (Alayyan et al. 

2009, García-Naya et al. 2017, Rani and 

Singal 2023, Tang 2023). It is well established 

that OFDM systems are susceptible to various 

interferences (Amleh and Li 2008, Shafin et al. 

2018). When the interference covariance can 

be reliably estimated at the receiver, pre-
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whitening can be applied before implementing 

subspace channel estimation (Wang et al. 

2018). However, in the absence of sufficient 

information about the interference, pre-

whitening cannot be performed, and subspace 

channel estimation becomes generally 

inaccurate (Mehrabani et al. 2023). 

Interference reduction is a highly 

challenging issue (Basireddy and Moradi 

2021), with the nature and characteristics of 

interference varying significantly across 

different applications (Schweizer et al. 2021). 

Additionally, interference characteristics 

change over time, making it difficult to 

develop a versatile algorithm effective in 

diverse environments. Furthermore, the 

objectives of an interference reduction system 

may depend on the specific context and 

application (Amleh and Li 2008, Hernandez et 

al. 2022, Mohammed and Hasan 2022). In 

signal processing and communication 

systems, implementing a robust interference 

reduction technique is crucial. Consequently, 

numerous researchers have focused on 

developing comprehensive noise reduction 

methods, leading to the proposal of various 

techniques (Hassanpour 2007, Li et al. 2022). 

The Wiener filter is known for its ability to 

reduce noise (interference) in a signal. 

However, this noise reduction is often 

accompanied by signal degradation. In other 

words, the Wiener filter is effective for noise 

reduction when the signal-to-noise ratio 

(SNR) is high (greater than 5 dB)  

(Dhanasekaran et al. 2022). When the SNR is 

below 5dB, using the Wiener filter may 

merely transform the noise into another form 

(Shamna and Amala 2020). Another recently 

introduced method for signal de-noising is 

time-frequency distribution (Li et al. 2022). 

This approach is notably effective in reducing 

noise even at low SNR. However, it is only 

applicable for bidirectional time-frequency 

distribution to reduce noise from time-series 

data, and it requires significant computational 

time to represent the signal in the time-

frequency domain (Hussein et al. 2023, 

Mishra and Roy 2022). Subspace-based blind 

channel estimation techniques have been 

widely studied (Alayyan et al. 2009, Lalitha 

and Reddy 2022, Mishra and Roy 2022). 

These methods leverage the orthogonality of 

the signal and noise subspaces to estimate 

channel coefficients (Amleh and Li 2008, 

Wang et al. 2018). However, conventional 

subspace-based techniques struggle in 

scenarios where interference is impulsive and 

non-Gaussian, as they assume ideal noise 

characteristics (Mishra and Roy 2022). 

Additionally, these methods suffer from 

performance degradation in highly time-

varying environments, where the covariance 

matrix estimation is affected by interference-

induced distortions (Mehrabani et al. 2023, 

Rekik et al. 2024). 

In this work, a new method is presented for 

reducing unknown interference in received 

signals using a combination of noise subspace 

decomposition and filtering of the eigenvalues 

associated with the vectors spanning the noise 

subspace. By accurately estimating and 

filtering the eigenvalues associated with noise 

components, the covariance matrix estimation 

process is improved, thereby enhancing the 

overall accuracy of channel estimation. A 

comparison of existing algorithms is 

conducted to evaluate channel estimation 

capability in terms of mean square error rate 

performance, assessed by the bit mean squared 

error to noise power ratio. These results are 

obtained using the MATLAB® simulation 

platform. To test the performance of the 

proposed method, flat and highly changing 

wireless channel environments are used, with 

channel models from Ling and Proakis (2017) 

and Mattera et al. (2021) for flat and highly 

changing channels respectively. 

 

Materials and Methods 

OFDM System Model   

The analysis is based on Figure 1 and Figure 

2 which show the OFDM discrete baseband 

transmitter and receiver with interference 

cancelation and channel estimation sections. 

 

. 
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Figure 1: OFDM Baseband Discrete Time Transmitter 

 

The symbols to be transmitted are given as 

𝒂(𝑛) = [𝑎(𝑛, 𝑘0), 𝑎(𝑛, 𝑘1), … ,    𝑎(𝑛, 𝑘𝑁−1 + 𝐷 − 1)]𝑇 (1) 

where D is the number of data subcarriers, N is the number of subcarriers, 𝑘𝑖 is the kth subcarrier 

frequency, 𝑛 = {. . . , −3, −2,−1, 0, 1, 2, 3, . . . }, 𝑖 = 0,1,2,…,N-1 and N-D the number of 

unmodulated subcarriers, referred to as virtual subcarriers (VCs). Let P be the length of cyclic 

prefix (CP), then for each OFDM symbol should be appended with the last P samples of itself 

after applying N-point IFFT operation on vector in equation (1). The resulting time domain signal 

is given as 

𝐬(𝑖) = [𝑠(𝑖, 𝑁 − 𝑃), … , 𝑠(𝑖, 𝑁 − 1), 𝑠(𝑖, 0), …    , 𝑠(𝑖, 𝑁 − 1)]𝑇 (2) 

The continuous time signal is pulse shaped by a transmit filter 𝑔𝑡𝑥(𝑡) before transmission 

through the wireless channel 

           𝑠(𝑡) = ∑ ∑ 𝑠(𝑛, 𝑙mod𝑁)𝑔𝑡𝑥[𝑡 − 𝑈𝑇]𝑈−1
𝑘=0

∞
𝑛=−∞  (3) 

where 𝑇 is the symbol duration, 𝑈 = 𝑛(𝑁 + 𝑃) + 𝑘  and = 𝑁 − 𝑃 + 𝑘 . However, equation (3) 

can simply be written as 

                     𝑠(𝑡) = ∑ 𝑠(𝑈𝑇)𝑔𝑡𝑥(𝑡 − 𝑈𝑇)∞
𝑈=−∞                                (4) 

 The signal is passed through channel of impulse response ℎ(𝑡) , corrupted by uncorrelated 

complex Gaussian noise 𝑤(𝑡) and filtered with receive filter 𝑔𝑟𝑥(𝑡) . The composite channel 

impulse response is given as 

     ℎ(𝑡) = 𝑔𝑡𝑥(𝑡) ∗ 𝑐(𝑡) ∗ 𝑔𝑟𝑥(𝑡)        (5) 

where (*) denote convolution operation. 
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Figure 2: OFDM Baseband Discrete Time Receiver 

The received signal y(t) is expressed as 

              𝑦(𝑡) = ∑ 𝑠(𝑈𝑇)ℎ[𝑡 − 𝑈𝑇]     + 𝑣(𝑡)∞
𝑈=−∞ + 𝑒(𝑡)                         (6) 

where 𝑣(𝑡) = 𝑤(𝑡) ∗ 𝑔𝑟𝑥(𝑡) and 𝑒(𝑡) are the filtered noise and impulsive interference 

respectively. 

Assuming that channel has finite length of  𝐿 + 1 ≤ 𝑃 coefficients, the sampled received signal 

at  𝑡 = 𝑚𝑇𝑠 is given as 

       𝑦(𝑚𝑇𝑠) = ∑ 𝑠(𝑈𝑇)ℎ[𝑚𝑇𝑠 − 𝑈𝑇]     + 𝑣(𝑚𝑇𝑠) + 𝑒(𝑚𝑇𝑠)
∞
𝑈=−∞  (7) 

where 𝑚 = {. . . , −3, −2,−1, 0, 1, 2, 3, . . . } and 𝑇𝑠 is the sampling time. 

Blind Channel Estimator 

In vector form the received signal is represented as 

                                     𝐲(𝑛) = 𝐱(n) +  𝐞(n) + 𝐯(𝑛)                                   (8) 

  

where   𝐱(n) = 𝐇�̅�𝐬(n), 𝐞(n), 𝐯(n) are the transmit OFDM symbol, impulsive interference and 

Additive White Gaussian Noise (AWGN) respectively. The goal is to estimate 𝐱(n) from noisy 

𝐲(n) and hence obtain accurate covariance matrix  𝐑𝑦𝑦 . 

The noisy signal 𝐲(n) can be represented by Hankel matrix for each OFDM symbol as 

             𝚪 =

[
 
 
 
 
yn(1) yn(2) … … yn(K)

yn(2) yn(3) … … yn(K + 1)
⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮

yn(L) yn(L + 1) … … yn(N) ]
 
 
 
 

                            

(9) 

The Singular Value Decomposition (SVD) of matrix 𝚪 with size P x Q is of the form 

           𝚪 = 𝐔𝚺𝐕T                                          (10) 

where  𝐔P x r and 𝐕r x Q are orthogonal matrices and 𝚺 is an 𝑟 x 𝑟 diagonal matrix of singular 

values with components 𝜎𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝜎𝑖𝑖 > 0. Furthermore, it can be shown that  𝜎11 ≥

𝜎22 ≥ 𝜎33 ≥ 0 (Forney 1975, Kawasaki and Matsumura 2022). The columns of the orthonomal 

matrices 𝐔 and 𝐕 are called the left and right singular values respectively. Hence, applying 
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Subspace Decomposition (SD) of the matrix 𝚪 yields 

           𝚪 = 𝐔𝚺𝐕T = (𝐔s   𝐔n) [
𝚺s 0
0 𝚺n

] (
𝐕s

T

𝐕n
T
)                                                                  

(11) 

From equation 11 the signal and noise subspaces are separated. For each OFDM symbol the 

signal and noise subspace can now be expressed as 

 𝐱s = 𝐔s𝐔s
T𝚪 = 𝚪𝐕s𝐕s

T                                                                          (12) 

 

   𝐰𝑛 = 𝐔n𝐔n
T𝚪 = 𝚪𝐕n𝐕n

T                                                                                (13) 

where 𝚺s and 𝚺n represent the clean signal 

subspace and noise subspace respectively. The 

noise subspace is taken in this context to 

contain both noise and impulsive interference. 

As can be seen from (11) a threshold point in 

the 𝚺 matrix has to be determined so that the 

separation of noise space from signal space 

can be done. In the work by (Hassanpour 

2007), the threshold point is calculated by 

derivation of the curve in each point. In this 

work, the threshold point will be determined 

by SNR of the transmitted signal, since 

researches (Bröcker et al. 2002, Kirtland et al. 

2023) show that noise subspace is mainly 

related to those singular values that are lower 

than the threshold point. This technique is 

termed here as SVD+SD technique.  

After removing the impulsive interference 

effects on the received signal by SVD+SD 

technique the received signal can now be 

expressed as

 

𝑦 = Ξ𝑎(𝑛) +  𝑣(𝑛) (14) 

It is shown in (Alayyan et al. 2009) that matrix Ξ has full column rank, if and only if 

𝑟𝑎𝑛𝑘 (𝐻 (𝑒𝑗
2𝜋

𝑁
𝑖)) = 1 for all 𝑖 ∈ {𝑘}𝑘=𝑘0

𝑘0+𝐷−1
 . The channel order is upper bounded by the length 

of CP, which is usually set to be greater than channel delay spread in practical OFDM systems. 

The autocorrelation matrix 𝑅𝑦𝑦 = 𝐸{𝑦(𝑛)𝑦(𝑛)𝐻} of the interference-free received signal vector 

𝑦(𝑛) is diagonalized through Eigen Value Decomposition (EVD) for noise and signal subspaces. 

The eigen vectors U are partitioned into the vectors Us spanning the signal subspace  𝑆𝑝𝑎𝑛(𝑈𝑠) 

and the vectors Un spanning the noise subspace 𝑆𝑝𝑎𝑛(𝑈𝑛) as 

𝑈 = [𝑈𝑠|𝑈𝑛] = [𝑢1, 𝑢2, … , 𝑢𝐷|𝑢𝐷+1, 𝑢𝐷+2, … , 𝑢𝑁+𝑃−𝐿] (15) 

Since 𝑆𝑝𝑎𝑛(Ξ) and 𝑆𝑝𝑎𝑛(𝑈𝑠) share the same D-dimensional space and are orthogonal to 

𝑆𝑝𝑎𝑛 (𝑈𝑛), the following relationship holds 

𝑢𝑘
𝐻Ξ = 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ {𝑛}𝑛=𝐷+1

𝑁+𝑃−𝐿 (16) 

Hence, the channel is estimated using �̂�𝑘 in (16) spanning �̂�𝑛. In this case we can obtain the 

channel matrix estimate �̂� by minimizing a quadratic cost function 𝐶(𝐻) given as 

𝐶(𝐻) = ∑ ‖𝑢𝑘
𝐻Ξ‖2

𝑁+𝑃−𝐿

𝑘=𝐷+1

 

 

(17) 

Partitioning the Eigen vector estimates �̂�𝑘 into N+P-L equal segments gives 

�̂�𝑘 =

[
 
 
 

�̂�𝑘
1

�̂�𝑘
2

⋮
�̂�𝑘

𝑁+𝑃−𝐿]
 
 
 

 

 

 

(18) 

Constructing the L+1 x N+P matrix �̂�𝑘  as 

�̂�𝑘 =

[
 
 
 
�̂�𝑘

1 … �̂�𝑘
𝑁+𝑃−𝐿 0 … 0

0 �̂�𝑘
1 … �̂�𝑘

𝑁+𝑃−𝐿 … 0
⋮ 0 ⋱ ⋮ ⋱ ⋮
0 … 0 �̂�𝑘

1 … �̂�𝑘
𝑁+𝑃−𝐿]

 
 
 

 

 

 

(19) 
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and defining matrix Ψ as 

Ψ ≜ ∑ �̂�𝑘(𝐹𝐹𝐻)�̂�𝑘
𝐻

𝑁+𝑃−𝐿

𝑘=𝐷+1

 

(20) 

The cost function can now be written as 

  𝐶(𝐻) = ℎ𝐻Ψℎ   𝑓𝑜𝑟 ‖ℎ‖2 = 1     (21) 

The estimated channel coefficients will now be obtained as 

       ℎ̂ = [ℎ0  ℎ1   …    ℎ𝐿] = arg       (ℎ𝐻Ψℎ)
  ‖ℎ‖2=1

𝑚𝑖𝑛                                  (22) 

The estimate of the channel response will be 

the Eigen vector associated with smallest 

Eigen value of Ψ. Since the direction and 

magnitude of ℎ is not known a priori, there is 

inherent ambiguity in estimation. This 

ambiguity is cleared by a factor obtained by 

transmitting a few pilot symbols known to the 

receiver. 

 

Experimental Results 

Simulation and Analytical Parameters 

In this section, the parameters for simulation 

analysis of the proposed channel estimation 

algorithm based on the noise subspace 

decomposition and filtering of Eigen values 

are presented. The proposed method is 

compared with the existing subspace (SS) 

methods presented in Wang et al. (2018) and 

Rekik et al. (2024). Table 1 shows the system 

and channel experimental conditions based on 

the IEEE 802.11ax standard (Mozaffariahrar 

et al. 2022) in the numerical experiments.  

Table 1: Simulation and Experimental Conditions 

Parameter Value 

OFDM symbol duration 1

300
 ms   

FFT-points N 512 

Carrier frequency 2.4 GHz 

Sampling interval Ts 72 μs 

Modulation  QPSK 

CP length Tg 9

128
 Ts 

Subcarrier mapping (𝑲 ≤ 𝑵) 
−

𝐾

2
,−

𝐾

2
+ 1, . . . . . ,

𝐾

2
− 1  

Transmission bandwidth 5 MHz        10 MHz 

 

The selection of the parameters in Table 1 is 

crucial for ensuring that the proposed method 

is evaluated under realistic and practical 

conditions. The carrier frequency of 2.4 GHz, 

FFT size, cyclic prefix, bandwidths and 

modulation scheme align with widely used 

wireless communication standards such as 

IEEE 802.11ax (Wi-Fi 6) (Mozaffariahrar et 

al. 2022) and LTE (Weerasinghe et al. 2020), 

making the findings applicable to modern 

broadband networks. 

As a metric of the channel estimation 

accuracy, the mean square error (MSE) is 

defined as

 

𝑀𝑆𝐸 = √
1

𝜅
∑ ‖ℎ̂ − ℎ‖

2𝜅

𝑘=1
 

 

(23) 

where ℎ̂𝑘  denotes the k-th run estimate of the channel h. Κ denotes the number of runs and is 

chosen here to be 300. The signal symbols are drawn from QPSK constellation. The signal to 

noise power ration (SNR) of the channel is defined as 
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𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 (
E{‖𝑦𝑘‖

2}

E{‖𝑣𝑘‖
2}

) 
 

(24) 

In this work the bandwidth of transmission is assumed to be equal to the data rate. Therefore, the 

SNR defined in (24) can also be represented as 

         𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 (
𝐸𝑏

𝑁0
) (25) 

where 𝐸𝑏  and 𝑁0 are energy per bit and noise power spectral density. For simulation, 5000 

random symbols are generated and the system utilizes the IDFT transform with QPSK 

constellations. The channel is simulated as a L+1=51 tap FIR channel and is assumed that the 

channel taps are independent and identically distributed (i.i.d.) and correlate in time.   

 

Results and Discussion 

Simulation without Interference 

The performance of the proposed blind 

channel estimator was evaluated and 

compared with the existing subspace (SS)-

based methods presented in Wang et al. (2018) 

and Rekik et al. (2024).  The comparison 

focused on the estimation capabilities of these 

methods in the absence of interference. The 

number of OFDM symbols was fixed to Κ =
300  and SNR is varied from 5 to 30 dB. The 

remaining system parameters were derived 

from IEEE 802.11ax standard (IEEE 

Computer Society LAN/MAN Standards 

Committee 2021).  The channels under 

consideration were modeled as FIR filters with 

an order of L = 4. To thoroughly assess the 

estimator's performance, two extreme cases of 

channel coefficients were analyzed. In the first 

case, as shown in Table 2, the zeros of the 

channel were well separated. In the second 

case, as detailed in Table 3, the zeros of the 

channel were closely spaced. The results, 

illustrated in Figure 3 for the well-separated 

zeros scenario (corresponding to Table 2) and 

in Figure 4 for the closely spaced zeros 

scenario (corresponding to Table 3), 

demonstrate a clear performance advantage of 

the proposed estimator over the existing SS-

based methods. 

 

Table 2: Channel with well-spaced zeros 

𝒍 0 1 2 3 4 

𝒉(𝒍) 0.1-0.1i 0.5-0.5i 0.9-0.9i 1.2-1.2i 1.5-1.5i 

 

Table 3: Channel with closely spaced zeros 

𝒍 0 1 2 3 4 

𝒉(𝒍) 0.2-0.2i 0.3-0.3i 0.4-0.4i 0.5-0.5i 0.6-0.6i 

 



Tanz. J. Sci. Vol. 51(1) 2025 

159 

 
Figure 3: MSE vs SNR for proposed and existing SS-based methods for channel with well 

spaced zeros without interference. 

. 

 
Figure 4: MSE vs SNR for proposed and existing SS-based methods for channel with 

closely spaced zeros without interference 
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Specifically, the proposed method exhibits 

superior performance across a wide range of 

SNR values in both channel conditions. A 

notable observation is that when the channel 

zeros are closely spaced, the performance of 

existing methods significantly deteriorates at 

low SNR levels. This is particularly evident in 

Figure 4, where the existing methods struggle 

to provide accurate channel estimation under 

these challenging conditions. In contrast, the 

proposed estimator maintains robust 

performance, highlighting its effectiveness in 

handling doubly dispersive channels with 

poorly spaced zeros. 

 

Simulation with Interference 

In addition to evaluating the performance of 

the proposed blind channel estimator in the 

absence of interference, the proposed method 

was assessed for its robustness in the presence 

of random interference. Using the same 

system and channel parameters as in the initial 

simulation setup, the experiment was repeated 

with random interference added to the 

received signal, as illustrated in Figure 5.The 

interference was modeled as a series of 

randomly spaced pulses with infinitesimal 

duration, simulating a realistic scenario where 

impulsive noise can severely affect signal 

quality. The results, depicted in Figures 6 and 

7, demonstrate the performance of the 

proposed method compared to existing SS-

based methods under these challenging 

conditions. Specifically, Figure 6 corresponds 

to the scenario with well-separated zeros 

(similar to Table 2), while Figure 7 pertains to 

the scenario with closely spaced zeros (similar 

to Table 3). The proposed method consistently 

outperformed the existing methods by a 

significant margin of 5 dB across various SNR 

levels. This notable improvement underscores 

the robustness of the proposed estimator in 

mitigating the effects of random interference. 

In the presence of random interference, the 

existing SS-based methods exhibited 

considerable degradation in performance, 

especially at lower SNR levels. This is 

observed in the closely spaced zeros scenario 

(Figure 7), where the existing methods could 

not maintain accurate channel estimation. In 

contrast, the proposed method demonstrated 

remarkable resilience, maintaining high 

estimation accuracy even in the presence of 

interference.  
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Figure 5: Random Generated Interference Impulses 

. 

 
Figure     6:MSE vs SNR for proposed and existing SS-based methods for channel with well-

spaced zeros with interference 

 

. 
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Figure 7: MSE vs SNR for proposed and existing SS-based methods for channel with 

closely spaced zeros with interference 

The convergence behavior of the proposed 

estimator and the existing subspace (SS)-

based methods was analyzed under the 

conditions specified in Table 2 (well-spaced 

zeros) and Table 3 (closely spaced zeros). 

Figures 8 and 9 illustrate the convergence 

performance of both estimators as a function 

of the number of OFDM symbols at an SNR 

of 10 dB. Convergence is a critical metric as it 

indicates how quickly an estimator can 

achieve reliable channel estimation with an 

increasing number of OFDM symbols. A 

faster convergence implies that the estimator 

requires fewer symbols to accurately identify 

the channel characteristics, which is 

particularly advantageous in dynamic 

communication environments. As depicted in 

Figures 8 and 9, the performance of both the 

proposed and existing estimators improves 

with an increasing number of OFDM symbols.  

 

 

 

 
Figure 8: Convergence of proposed and existing SS-based methods for channel with well-

spaced zeros with interference 

. 
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Figure 9: Convergence of proposed and existing SS-based methods for channel with closely 

spaced zeros with interference 

However, a significant difference in 

convergence rates is observed between the two 

methods. For the scenario with well-spaced 

zeros (Figure 8), the proposed method 

demonstrates rapid convergence, achieving 

reliable channel identification with less than 

1000 OFDM symbols. In contrast, the existing 

SS-based methods require at least 1500 

OFDM symbols to achieve comparable 

performance in flat fading channels. This 

faster convergence of the proposed method 

highlights its efficiency and effectiveness in 

estimating channel coefficients under 

favorable conditions. In the more challenging 

scenario with closely spaced zeros (Figure 9), 

the proposed method continues to exhibit 

superior performance. It converges with at 

least 1000 OFDM symbols, while the existing 

methods require around 2000 OFDM symbols 

to reach similar levels of accuracy in highly 

dispersive channels. This demonstrates the 

robustness of the proposed method in handling 

complex channel conditions, where the zeros 

of the channel are closely spaced, and the 

channel exhibits significant variation.  

For fair comparison between proposed and 

existing subspace based OFDM channel 

estimation schemes, the computational 

complexity is presented in Table 4. The 

complexity in this study is defined as of the 

number of multiplications, additions, matrix 

inversions and computational resources 

needed to complete each iteration. 𝑁 is the 

number of OFDM subcarriers, Γ−1 is the 

inverse of Hankel matrix,  𝑃 is the number of 

rows in the Hankel matrix, 𝑄 is the number of 

columns in the Hankel matrix and 𝒪(. ) is the 

computational complexity order. 

 

  



Kwame Ibwe - Noise Subspace Channel Estimation Algorithm for OFDM Systems 

164 

Table 4: Computational Complexity of Subspace-Based Channel Estimation Schemes 

Scheme Complexity 

Wang et al., 2018  𝒪(𝑁3). 𝛤−1𝒪(𝑁2) 

Rekik et al., 2024 (𝒪(𝑁3) + 𝒪(𝑃𝑄2)). 𝛤−1 

Proposed Method 𝒪(𝑃𝑄2)+ 𝒪(𝑄2). 𝛤+ 𝒪(𝑁2) 

 

The computational complexity analysis 

highlights that conventional subspace-based 

methods presented in Wang et al. (2018) and 

Rekik et al. (2024), rely on matrix inversion 

and full eigenvalue decomposition (EVD), 

leading to a high complexity of (𝒪(𝑁3). 

While Rekik et al. (2024) integrates singular 

value decomposition (SVD) to improve noise 

subspace estimation, it still incurs significant 

computational overhead. In contrast, the 

proposed SVD+SD based method achieves a 

more balanced trade-off between accuracy and 

efficiency by banking on noise subspace 

decomposition and eigenvalue filtering, 

reducing the dependency on high-complexity 

matrix inversion. Despite the added cost of 

𝒪(𝑃𝑄2) for SVD and 𝒪(𝑄2) for EVD, the 

proposed method improves convergence 

speed and estimation accuracy, ultimately 

requiring fewer OFDM symbols to achieve 

reliable channel estimation. This makes it 

more suitable for high-mobility and 

interference-prone environments, such as 5G 

and beyond systems. 

Figures 10 and 11 present the overall bit 

error rate (BER) performance of the proposed 

method compared to existing subspace (SS)-

based methods, as a function of SNR, under 

the channel settings described in Table 2 and 

Table 3, respectively. In Figure 10, where the 

zeros of the channel are well-spaced, the 

proposed method achieves an impressive BER 

of 10-6 at an SNR of 15 dB. In comparison, the 

methods by Rekik et al. (2024) and Wang et 

al. (2018) achieve the same BER at 

significantly higher SNRs of 22 dB and 27 dB, 

respectively. This substantial difference 

highlights the energy efficiency of the 

proposed method, as lower SNR requirements 

translate to reduced power consumption. In 

Figure 11, the BER performance is assessed 

under the channel settings of Table 3, where 

the zeros of the channel are closely spaced. 

Although the performance of the proposed 

method slightly deteriorates due to the more 

challenging channel characteristics, it still 

outperforms the existing methods. The 

proposed method achieves a BER of 10−6 at an 

SNR of 17 dB, whereas the methods by Rekik 

et al. (2024) and Wang et al. (2018) require 

SNRs of 23 dB and 28 dB, respectively, to 

reach the same BER level. This demonstrates 

the proposed method's robustness and 

efficiency even in complex and highly 

dispersive channel conditions. 
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Figure 10: BER vs SNR performance of proposed and existing SS-based methods for 

channel with well-spaced zeros with interference 

. 

 
Figure 11:BER vs SNR of proposed and existing SS-based methods for channel with closely 

spaced zeros with interference 
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The results presented in this section 

highlight the effectiveness of the proposed 

channel estimation method under various 

wireless channel conditions. The selection of 

simulation parameters, including carrier 

frequency, bandwidth, and modulation 

scheme, is based on widely used 

communication standards such as IEEE 

802.11ax and LTE, ensuring that the findings 

are applicable to practical broadband 

networks. The observed improvements in 

MSE, BER, and convergence behavior 

confirm that the proposed method provides 

robust and efficient channel estimation, 

particularly in environments affected by 

impulsive interference and high mobility. 

These insights are critical for the development 

of next-generation OFDM-based wireless 

systems, where reliable and low-complexity 

channel estimation is essential for maintaining 

communication quality. 

 

Conclusion 

In this paper, a blind channel estimator for 

Orthogonal Frequency Division Multiplexing 

(OFDM) in the presence of unknown 

impulsive interferences was presented. The 

impulsive interference reduction in received 

signal was done using SVD+SD technique. 

The technique used a combination of noise 

subspace decomposition and filtering of the 

Eigen values associated with the vectors 

spanning the noise subspace. Then the 

improved subspace method which utilizes the 

presence of virtual subcarriers was applied to 

the estimated covariance matrix to 

approximate the channel. The key to accurate 

estimation of the channel coefficients was 

accurate estimation of autocorrelation matrix 

of received. The proposed channel estimator 

was able to outperform the existing blind 

estimators with average of 5dB at error rate of 

10-2 for badly spaced channel zeros. 

Furthermore, the complexity of the proposed 

scheme can be adjusted by varying the number 

of considered interference eigenvalues in the 

SVD+SD technique, however, at the cost of 

estimation accuracy and consequently 

performance. These findings have significant 

implications for the design of OFDM systems 

operating in environments with impulsive 

interference and doubly dispersive channels. 

The ability to maintain high estimation 

accuracy under such conditions can lead to 

more reliable and efficient communication 

systems. Future work could explore the 

application of the proposed estimator in 

different OFDM standards and its 

performance in real-world scenarios. 

Additionally, further optimization of the 

method to reduce computational complexity 

while maintaining estimation accuracy would 

be a valuable direction for research. 
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