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Abstract 

Taeniasis and cysticercosis pose a health concern on both humans and animals, as well as the 

economy of livestock farmers in rural areas. This study examines cysticercosis and taeniasis 

transmission dynamics in human, pig and cattle populations. Both deterministic and continuous 

time Markov chain (CTMC) stochastic approaches are used. For deterministic and CTMC 

stochastic models, we used the next generation approach and the multitype branching process 

respectively to calculate the basic reproduction number and the stochastic threshold. The 

potential probability of cysticercosis and taeniasis extinction is computed through numerical 

simulations for the CTMC model using 10,000 sample paths and altering the initial values for 

classes that are infected. The findings demonstrate that when diseases’ outbreak occur, the 

CTMC stochastic model’s solutions resemble those of deterministic model quite closely. The 

findings also suggest that the likelihood of diseases’ extinction is high if they develop from a 

small number of taenia eggs. If the infections, however, emerge from humans with cysticercosis, 

they will perish. If the infections arise from either infected beef and pork or humans with 

taeniasis, there is a significant diseases’ outbreak in the human, pig and cattle populations. 

Therefore, at the beginning of a diseases’ outbreak, management strategies that concentrate on 

reducing taeniasis-infected individuals and consumption of infectious beef and pork can help in 

regulating the transmission of the diseases in humans, pigs, and cattle. 

Keywords: Taeniasis, Cysticercosis, Stochastic Threshold, Markov Chain, Multitype 

Branching Process, Basic Reproduction Number. 

 

Introduction 

Taeniasis is the intestinal infection caused 

by the adult tapeworms. Humans contract 

taeniasis when they eat inadequately cooked 

or raw pork or beef infected with Taenia 

solium or Taenia saginata tapeworm larval 

cysts. Cysticercosis refers to the infection of 

tissues or organs of humans or animals by 

larval form tapeworms (Symeonidou et al. 

2018). These diseases are mostly found in 

rural areas where cattle and pigs are kept in a 

free ranging system (Flisser et al. 2006, WHO 

2005). In the dynamics of taeniasis and 

cysticercosis, humans are the definitive hosts. 

Tapeworm eggs which contaminate water 

sources, fodder and pastures are released when 

individuals with taeniasis defecate in the fields 

(Dermauw et al. 2018). When cattle consume 

T. saginata tapeworms from the environment, 

they get cysticercosis. Pigs get cysticercosis 

when they feed on human feaces or ingest T. 

solium eggs from the environment 

(Symeonidou et al. 2018). Cysticercosis is 

acquired by humans when they consume T. 

solium eggs via drinking contaminated water, 

consumption of fruits and vegetables (Brutto 

2013). When T. solium eggs are eaten, they 

hatch and progress into larvae that infiltrate 

the intestines and move into body tissues and 

organs, forming cysts (WHO 2005). 
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Whenever larval cysts invade the brain, an 

individual acquires neurocysticercosis that 

causes epilepsy worldwide (Mwasunda et al. 

2021a). 

Cysticercosis and taeniasis are globally 

distributed. However, the diseases are more 

endemic in Africa, Asia and Latin America 

(Symeonidou et al. 2018). These diseases 

affect human health and the livelihood of 

farmers in rural areas. Cysticercosis reduces 

market value for cattle and pigs by making 

beef and pork unsafe for human consumption 

(WHO 2005, Winskill et al. 2017). 

Worldwide, taeniasis and cysticercosis affect 

nearly 50 million people and approximately 

50,000 human cysticercosis induced deaths 

occur every year (Aung and Spelman 2016). 

The World Health Organization has identified 

cysticercosis to be the main tropical neglected 

disease and is the major source of death due to 

food borne diseases (Mwasunda et al. 2021a). 

In Tanzania, porcine cysticercosis has been 

reported in northern, central and southern 

regions with the prevalence rates of 5.5-

16.9%, 14.9% and 0.3-17.4% respectively 

(Trevisan et al. 2017). Human taeniasis and 

cysticercosis have also been reported in 

Tanzania (Kavishe et al. 2017, Mwanjali et al. 

2013). For instance, in 2012 there were 17,853 

epileptic cases and 212 deaths in the country. 

In the same year there were 183,927 porcine 

cysticercosis cases and cysticercosis economic 

burden was approximately US$ 7.9 million 

(Trevisan et al. 2017).  

Mathematical modelling plays a 

significant role in understanding infectious 

disease transmission dynamics. Currently, few 

deterministic and statistical models have been 

formulated and rigously analyzed to study the 

dynamics of taeniasis and cysticercosis in 

human and pigs. These studies include 

Gonzalez et al. (2002), Braae et al. (2016), 

Kyvsgaard et al. (2007), Jose et al. (2018) 

Sanchez Torres et al. (2019), Winskill et al. 

(2017) and Mwasunda et al. (2021a, 2021b). 

Recently, the study by Mwasunda et al. (2022) 

has focused on studying the dynamics of T. 

saginata taeniasis and cysticercosis through 

deterministic and continuous time Markov 

chain (CTMC) stochastic models. However, 

the study did not capture the transmission 

dynamics of taeniasis and cysticercosis due to 

T. solium tapeworm. In this study, we 

formulate and analyze deterministic and 

continuous time Markov chain (CTMC) 

stochastic models for cysticercosis and 

taeniasis dynamics in pigs, cattle and humans 

due to T. saginata and T. solium tapeworms.  

 

Deterministic Mathematical Model  

Formulation of the Model 

We take into account Mwasunda et al. 

(2021a) basic model for transmission 

dynamics of cysticercosis and taeniasis. 

Humans are divided into three groups: those 

who are susceptible to infection 𝑆𝐻, those with 

taeniasis 𝐼𝐻𝑇  and those who have cysticercosis 

𝐼𝐻𝐶 . Pigs are classified into susceptible 𝑆𝑃 and 

infected 𝐼𝑃 pigs whereas cattle are grouped 

into 𝑆𝐶  and 𝐼𝐶  classes that represent 

susceptible and infected cattle respectively. 

The classes 𝐵𝐼  and 𝑃𝐼  stand for infectious beef 

and pork, respectively, while 𝐸𝑇 denotes 

number of taenia eggs in the environment. 

The recruitment of susceptible humans is 

considered to occur through birth at per capita 

rate 𝜓 and decline when they consume 

inadequately cooked or raw infectious beef or 

pork at rates 𝛼𝑝 and 𝛼𝑏 respectively. 

Susceptible humans also decrease through 

ingestion of 𝑇. solium eggs at a rate 𝜃. 

Cysticercosis infected humans replenish at a 

rate 𝜃 when susceptible humans consume 𝑇. 

solium eggs and decrease at a rate 𝜇𝑑 due to 

disease induced death. Taeniasis infected 

individuals grow at rates 𝛼𝑝 and 𝛼𝑏 as a 

consequence of susceptible humans to ingest 

pork and beef infected with tapeworm larval 

cysts respectively. The parameter 𝛽𝑇 denotes 

the probability of susceptible humans to 

acquire taeniasis from raw or undercooked 

infected beef and pork. Human natural death 

is considered to occur at a rate 𝜇ℎ. When 

individuals with taeniasis defecate in open 

spaces, the number of taenia eggs in the 

environment increases at a rate 𝜈 and 

diminishes at a rate 𝜇𝑒 as the eggs die 

naturally. 

The per capita rates of susceptible cattle 

and pigs increase through birth at rates 𝜙 and 

Λ, respectively, and decline when they eat 

taenia eggs from the contaminated 



Mwasunda and Irunde - Cysticercosis and Taeniasis in Humans, Pigs and Cattle 

198 

environment at rates 𝛾𝐶 and 𝛾𝑃, respectively. 

When slaughtered for consumption, 

susceptible cattle and pigs both decline at rates 

𝜎 and 𝜌, respectively. Infected cattle and pigs 

grow at rates 𝛾𝐶 and 𝛾𝑃 respectively when 

susceptible cattle and pigs feed on the 

contaminated environment. The natural death 

is assumed to occur at the rates 𝜇𝐶 and 𝜇𝑃, 

respectively, for all classes of cattle and pigs. 

When infected pigs and cattle are slaughtered 

for consumption, infectious beef and pork 

increase at the rates 𝜔 and 𝜂, respectively. The 

amount of infectious pork and beef is 

quantified in terms of number of infected 

cattle and pigs that are slaughtered for 

consumption. Humans who are susceptible to 

infection are considered to eat infectious beef 

and pork at rates of 𝛼𝑏 and 𝛼𝑃, respectively. 

The proportions of infectious beef and pig that 

are not ingested by susceptible humans are 

represented by the parameters 𝜖 and 𝛿 

respectively. 

To formulate the basic model that governs 

cysticercosis and taeniasis in human, pig and 

cattle populations, we consider the following 

assumptions: Both cattle and pigs are kept in 

free range farming system, and we do not 

consider migration; Humans can be infected 

by either cysticercosis or taeniasis; pigs and 

cattle do not die due to cysticercosis infection; 

contact rates of pigs, humans and cattle with 

taenia eggs are density dependent; 

consumption rates of raw or inadequately 

cooked infected pork or beef are proportion to 

the quantity of pork or beef available. The 

basic model for cysticercosis and taeniasis 

transmission dynamics in human, pig and 

cattle populations is summarized in Figure 1 

and model parameters are described in Table 

1. 

 

 
Figure 1: The Model Flow Diagram for Transmission Dynamics of Taeniasis and 

Cysticercosis in Human, Pig and Cattle Populations 
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The basic model for cysticercosis and taeniasis transmission dynamics is given by the system:  

 
𝑑𝑆𝐻
𝑑𝑡
 = 𝜓 − 𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑃𝑃𝐼)𝑆𝐻 − 𝜃𝐸𝑇𝑆𝐻 − 𝜇ℎ𝑆𝐻 ,

𝑑𝐼𝐻𝑇
𝑑𝑡

= 𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑃𝑃𝐼)𝑆𝐻 − 𝜇ℎ𝐼𝐻𝑇 ,                         

𝑑𝐼𝐻𝐶
𝑑𝑡

= 𝜃𝐸𝑇𝑆𝐻 − (𝜇𝑑 + 𝜇ℎ)𝐼𝐻𝐶 ,                                    

𝑑𝑆𝑃
𝑑𝑡

= 𝛬 − 𝛾𝑃𝐸𝑇𝑆𝑃 − (𝜇𝑃 + 𝜌)𝑆𝑃 ,                               

 
𝑑𝐼𝑃
𝑑𝑡
= 𝛾𝑃𝐸𝑇𝑆𝑃 − (𝜇𝑃 + 𝜔)𝐼𝑃 ,                                       

𝑑𝑃𝐼
𝑑𝑡

= 𝜔𝐼𝑃 − (𝛼𝑃 + 𝛿)𝑃𝐼 ,                                                

𝑑𝑆𝐶
𝑑𝑡

= 𝜙 − 𝛾𝐶𝐸𝑇𝑆𝐶 − (𝜇𝐶 + 𝜎)𝑆𝐶 ,                              

𝑑𝐼𝐶
𝑑𝑡
= 𝛾𝐶𝐸𝑇𝑆𝐶 − (𝜇𝐶 + 𝜂)𝐼𝐶 ,                                         

𝑑𝐵𝐼
𝑑𝑡

= 𝜂𝐼𝐶 − (𝛼𝑏 + 𝜖)𝐵𝐼 ,                                                

𝑑𝐸𝑇
𝑑𝑡

= 𝜈𝐼𝐻𝑇 − 𝜇𝑒𝐸𝑇 ,                                                       

         (1) 

subject to initial conditions: 𝑆𝐻(0) > 0; 𝐼𝐻𝐶(0) ≥ 0; 𝐼𝐻𝑇(0) ≥ 0; 𝑆𝑃(0) > 0; 𝐼𝑃(0) ≥ 0;  
 𝑆𝐶(0) > 0; 𝐼𝐶(0) ≥ 0; 𝐵𝐼(0) ≥ 0; 𝑃𝐼(0) ≥ 0; 𝐸𝑇(0) ≥ 0. 

 

Table 1: Model parameters’ description (unit: per year) 

Parameter Description Value     Source 

ψ Per capita human recruitment rate 300 Mwasunda et al. 

2021a 

𝜇𝑑 Human cysticercosis induced death rate 0.0141 Wang et al. 2013 

𝜇ℎ Per capita human natural death rate 0.0925 Wang et al. 2013 

Λ Per capita pig recruitment rate 150 Mwasunda et al. 

2021a 

𝛼𝑃 Consumption rate of infectious pork 0.012  Mwasunda et al. 

2021a 

𝛽𝑇 Probability of human to acquire 

taeniasis 

0.093 Mwasunda et al. 

2021a 

𝛾𝑃 Pig infection rate with T. Solium eggs 0.01 Kyvsgaard et al. 

2007 

𝜔 Rate of slaughtering infected pigs 0.332 Kyvsgaard et al. 

2007 

𝜌 Slaughtering rate of susceptible pigs 0.0252 Mwasunda et al. 

2021a 

𝜇𝑃 Per capita pig natural death rate 0.996 Winskill et al. 2017 

𝛿 Decaying rate of infectious pork 0.358 Mwasunda et al. 

2021a 

𝜙 Per capita cattle recruitment rate 120 Mwasunda et al. 

2021a 

𝛼𝑏 Consumption rate of infectious beef 0.023 Mwasunda et al. 

2021a 
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𝛾𝐶 Cattle infection rate by T. saginata eggs 0.00625 Mwasunda et al. 

2021a 

𝜎 Slaughter rate of susceptible cattle 0.213 Mwasunda et al. 

2021a 

𝜂 Rate of slaughtering infected cattle 0.0235 Mwasunda et al. 

2021a 

𝜇𝐶 Per capita cattle natural death rate 0.33 Kyvsgaard et al. 

2007 

𝜃 Human infection rate with cysticercosis 0.00523 Mwasunda et al. 

2021a 

𝜖 Decaying rate of infectious beef 0.225 Mwasunda et al. 

2021a 

𝜈 The rate of defecation by humans with 

taeniasis 

0.150 Mwasunda et al. 

2021a 

𝜇𝑒 Per capita natural death rate for taenia 

eggs 

10.42 Wang et al. 2013 

 

Positivity and Boundedness of Solutions 

To show whether the model solutions are well-posed, we need to show that the solutions are 

positive and bounded. In this section, we demonstrate that the solutions to model system model 

system (1) are bounded and positive. 

Positivity of Model Solutions 

Beginning with the equation for susceptible humans in the model system (1), we have: 

  

  
𝑑𝑆𝐻

𝑑𝑡
 = 𝜓 − 𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑝𝑃𝐼)𝑆𝐻  − 𝜃𝑆𝐻𝐸𝑇  − µℎ𝑆𝐻 ≥ (𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑝𝑃𝐼) + 𝜃𝐸𝑇 + µℎ )𝑆𝐻 , 

𝑑𝑆𝐻
𝑑𝑡

≥ (𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑝𝑃𝐼) + 𝜃𝐸𝑇 + µℎ  )𝑆𝐻 ,                                                                                       

𝑑𝑆𝐻
𝑆𝐻

≥ (𝛽𝑇 (𝛼𝑏 𝐵𝐼 + 𝛼𝑝 𝑃𝐼  ) + 𝜃𝐸𝑇 + µℎ   ) 𝑑𝑡,                                                                                 

𝑆𝐻(𝑡) ≥ 𝑆𝐻(0)𝑒
∫ (𝛽𝑇 (𝛼𝑏 𝐵𝐼(𝑠)+𝛼𝑝 𝑃𝐼 (𝑠))+𝜃𝐸𝑇(𝑠)+µℎ  ) 𝑑𝑠
𝑡
0 ≥ 0, ∀𝑡 ≥ 0.                                                  

                                                      
Similarly, it can be shown that: 

𝐼𝐻𝑇  ≥ 0; 𝐼𝐻𝐶 ≥ 0; 𝑆𝑃  ≥ 0; 𝐼𝑃  ≥ 0; 𝑃𝐼  ≥ 0; 𝑆𝐶  ≥ 0; 𝐼𝐶  ≥ 0; 𝐵𝐼  ≥ 0; 𝐸𝑇  ≥ 0, ∀𝑡 ≥ 0.  
Therefore, all model solutions are non-negative for all t > 0. 

Boundedness of Model Solutions 

To demonstrate the boundedness of the model system (1), consider 𝐻 =  𝑆𝐻  +  𝐼𝐻𝑇  +  𝐼𝐻𝐶 , 

𝑃 = 𝑆𝑃  + 𝐼𝑃, and 𝐶 =  𝑆𝐶  + 𝐼𝐶 , respectively, representing the entire populations of humans, 

pigs, and cattle. After adding up all equations for human population in model system (1), we get: 

 

                                                   
𝑑𝐻

𝑑𝑡
= 𝜓 − 𝜇𝑑𝐼𝐻𝐶 − 𝜇ℎ𝐻,                                                                 (2) 

 

                                                
𝑑𝐻

𝑑𝑡
+ 𝜇ℎ𝐻 ≤ 𝜓.                                                

Application of initial condition after integration gives: 

                                      𝐻(𝑡) ≤
𝜓

𝜇ℎ
+ (𝐻(0) −

𝜓

𝜇ℎ
) 𝑒−𝜇ℎ𝑡 ,                                                               (3) 

where 𝐻(0) is the initial total human population. In similar manner, it can be proved that pig 

and cattle populations are given by: 
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  𝑃(𝑡) ≤
Λ

𝜇𝑃
+ (𝑃(0) −

Λ

𝜇𝑃
) 𝑒−𝜇𝑃𝑡   and       𝐶(𝑡) ≤

ϕ

𝜇𝐶
+ (𝐶(0) −

ϕ

𝜇𝐶
) 𝑒−𝜇𝐶𝑡 ,                        (4)  

respectively, where 𝑃(0) and 𝐶(0) are total initial populations for pigs and cattle respectively. 

For each population, two cases are considered to analyze (3) and (4):  

 𝐻(0) >
𝜓

𝜇ℎ
  , (0)  >  

Λ

𝜇𝑃
 , 𝐶(0) >

𝜙

𝜇𝐶
  and when 𝐻(0) <  

𝜓

𝜇ℎ
, 𝑃(0) <  

Λ

𝜇𝑃
, 𝐶(0) <

 𝜙 

𝜇𝐶
.   

 For the two cases we obtain;     

    

𝐻(𝑡) ≤ Φ𝑡 = 𝑚𝑎𝑥 {
𝜓

𝜇ℎ
, 𝐻(0)}, 

                                                        𝑃(𝑡) ≤ 𝑚𝑎𝑥 {
Λ

𝜇𝑃
, 𝑃(0)}                                                               (5) 

 𝐶(𝑡) ≤ 𝑚𝑎𝑥 {
𝜙

𝜇𝐶
, 𝐶(0)}.               

 

Since 𝐻 = 𝑆𝐻 + 𝐼𝐻𝑇 + 𝐼𝐻𝐶 ≤ 𝛷𝑡, then 𝐼𝐻𝑇 ≤ 𝛷𝑡. Taking into account the equation for taenia 

eggs in model system (1), we have: 

 
𝑑𝐸𝑇
𝑑𝑡

= 𝜈𝐼𝐻𝑇 − 𝜇𝑒𝐸𝑇, 

                                                                
𝑑𝐸𝑇
𝑑𝑡

+ 𝜇𝑒  𝐸𝑇 = 𝜈𝐼𝐻𝑇 ,                                                           (6) 

𝑑𝐸𝑇

𝑑𝑡
+ 𝜇𝑒 𝐸𝑇 ≤ 𝜈Φ𝑡  . 

Integration and application of initial condition gives: 

                                

                                            𝐸𝑇(𝑡) ≤
𝜈Φ𝑡
𝜇𝑒

+ (𝐸𝑇(0) −
𝜈Φ𝑡
𝜇𝑒
) 𝑒−𝜇𝑒𝑡 ,                                                 (7) 

implying that:                𝐸𝑇(𝑡) ≤ Γ𝑡 = 𝑚𝑎𝑥 {
𝜈𝛷𝑡

𝜇𝑒 
, 𝐸𝑇(0)}. 

Similarly, considering the equations for infected pork and beef, we obtain: 

𝑃𝐼(𝑡) ≤ Θ𝑡 = 𝑚𝑎𝑥 {
𝜔Π𝑡

𝛼𝑏+𝛿 
, 𝑃𝐼(0)}    and  𝐵𝐼(𝑡) ≤ 𝜉𝑡 = 𝑚𝑎𝑥 {

𝜂𝜓𝑡

𝛼𝑏+𝜖 
, 𝐵𝐼(0)}, 

Showing that the model solutions go and do not leave the region: 

Ω = {
 (𝑆𝐻 , 𝐼𝐻𝑇 , 𝐼𝐻𝐶 , 𝑆𝑃 , 𝐼𝑃 , 𝑃𝐼 , 𝑆𝐶 , 𝐼𝐶 , 𝐵𝐼) ∈ ℝ+

10: 0 ≤ 𝐻(𝑡) ≤ Φ𝑡; 0 ≤ 𝑃(𝑡) ≤ Π𝑡;

0 ≤ 𝐶(𝑡) ≤ 𝜓𝑡; 0 ≤ 𝐸𝑇(𝑡) ≤ 𝛤𝑡; 0 ≤ 𝑃𝐼(𝑡) ≤ Θ𝑡; 0 ≤ 𝐵𝐼(𝑡) ≤ 𝜉𝑡  
 

}. 

Therefore, the solutions of the model system (1) are positive invariant throughout the region 

Ω. Solutions that begin at the boundary of Ω move into the region in infinite time. These results 

are summarized in Theorem 1. 

 

Theorem 1: The model solutions of the system (1) are positive invariant in the region 𝛺. 

Model Equilibria and Reproduction Number 𝑅0 

When there is no taeniasis and cysticercosis in pigs, cattle and humans we get the disease-

free state 𝐸0 given by: 

𝐸0 = (
𝜓

𝜇ℎ
, 0, 0,

Λ

𝜇𝑃 + 𝜌
 , 0, 0,

𝜙

𝜎 + 𝜇𝐶
, 0, 0 ,0 ). 

The basic reproduction number 𝑅0 is the expected number of new infections that could arise 

from the introduction of one infected individual in a fully susceptible population (Diekmann et 

al. 1990). The disease disappears in a population when 𝑅0 < 1 and survives when 𝑅0 > 1. We 

adopt the next generation matrix method to derive reproduction number 𝑅0  (van den Driessche 

and Watmough 2002). Let the vectors for new infections 𝐹𝑖   and transfer terms 𝑉𝑖 be given by: 



Mwasunda and Irunde - Cysticercosis and Taeniasis in Humans, Pigs and Cattle 

202 

 

𝐹𝑖 =

(

 
 
 
 

𝛽𝑇(𝛼𝑏𝐵𝐼 + 𝛼𝑃𝑃𝐼)𝑆𝐻
𝜃𝐸𝑇𝑆𝐻
𝛾𝑃𝐸𝑇𝑆𝑃
0

𝛾𝐶𝐸𝑇𝑆𝐶
0
0 )

 
 
 
 

, 𝑉𝑖 =

(

 
 
 
 
 

𝜇ℎ𝐼𝐻𝑇
(𝜇𝑑 + 𝜇ℎ)𝐼𝐻𝐶
(𝜔 + 𝜇𝑃)𝐼𝑃

−𝜔𝐼𝑃 + (𝛼𝑃 + 𝛿)𝑃𝐼
(𝜂 + 𝜇𝐶)𝐼𝐶

−𝜂𝐼𝐶 + (𝛼𝑏 + 𝜖)𝐵𝐼
−𝜈𝐼𝐻𝑇 + 𝜇𝑒𝐸𝑇 )

 
 
 
 
 

.                                               (8) 

We define matrices 𝐹 and 𝑉 by: 

                         𝐹 =
𝜕𝐹𝑖
𝜕𝑋𝑗

(𝐸0), 𝑉 =
𝜕𝑉𝑖
𝜕𝑋𝐽

(𝐸0),                                                                             (9) 

where 𝐸0 is the disease-free equilibrium. The largest eigenvalue of the matrix 𝐹𝑉−1 is the 

basic reproduction number denoted by: 

 

                     𝑅0 = 𝜌(𝐹𝑉
−1 ) .                                                                                                         (10)  

 

Thus from (9), we have:  

𝐹 =

(

 
 
 
 
 
 
 

0 0 0
𝛽𝑇𝛼𝑃𝜓

𝜇ℎ
0

𝛽𝑇𝛼𝑏𝜓

𝜇ℎ
0

0 0 0 0 0 0
𝜃𝜓

𝜇ℎ

0 0 0 0 0 0
ΛγP

𝜇𝑃+𝜌

0 0 0 0 0 0 0

0 0 0 0 0 0
𝜙𝛾𝐶

𝜎+𝜇𝐶

0 0 0 0 0 0 0
0 0 0 0 0 0 0 )

 
 
 
 
 
 
 

  and  

 

    𝑉 =

(

 
 
 
 

𝜇ℎ 0 0 0 0 0 0
0 𝜇𝑑 + 𝜇ℎ 0 0 0 0 0
0 0 𝜔 + 𝜇𝑃 0 0 0 0
0 0 −𝜔 𝛼𝑃 + 𝛿 0 0 0
0 0 0 0 𝜂 + 𝜇𝐶 0 0
0 0 0 0 −𝜂 𝛼𝑏 + 𝜖 0
−𝜈 0 0 0 0 0 𝜇𝑒)

 
 
 
 

.   

 

Applying the definition in equation (10), we obtain:  

 

                                                 𝑅0 = √𝑅𝐻𝑃 + 𝑅𝐻𝐶 ,                                                                 (11) 

 where 

     

𝑅𝐻𝑃 =
𝛽𝑇𝜈𝛼𝑃𝛾𝑃𝜔𝜓Λ

𝜇ℎ
2𝜇𝑒(𝛿+𝛼𝑃)(𝜔+𝜇𝑃)(𝜇𝑃+𝜌)

  and   𝑅𝐻𝐶 =
𝛽𝑇𝜈𝛼𝑏𝛾𝐶𝜂𝜓ϕ

𝜇ℎ
2𝜇𝑒(𝜖 +𝛼𝑏)(𝜂+𝜇𝐶 )(𝜇𝐶 +𝜎)

.                        (12) 

𝑅𝐻𝑃 is the partial reproduction number that arises from interaction of Taenia solium eggs 

with susceptible human and pig populations whereas  𝑅𝐻𝐶 denotes the partial reproduction 

number due to interaction of Taenia saginata  eggs with susceptible human and pig populations. 

The Endemic Equilibrium (EE)   

In the presence of cysticercosis and taeniasis in humans, pigs and cattle, we obtain the 

endemic equilibrium given by 𝐸∗  =  (𝑆𝐻
∗ , 𝐼𝐻𝑇

∗ , 𝐼𝐻𝐶
∗ , 𝑆𝑃

∗ , 𝐼𝑃
∗ , 𝑃𝐼

∗, 𝑆𝐶
∗, 𝐼𝐶

∗ , 𝐵𝐼
∗, 𝐸𝑇

∗) where: 

 



 Tanz. J. Sci. Vol. 51(1) 2025 

203 

𝑆𝐻
∗ =

𝜓

𝛽𝑇𝐹0𝐸𝑇
∗ + 𝜃𝐸𝑇

∗ + 𝜇ℎ
,  𝐼𝐻𝑇
∗ =

𝛽𝑇𝐹0𝐸𝑇
∗𝑆𝐻
∗

𝜇ℎ
 , 𝐼𝐻𝐶

∗ =
𝜃𝐸𝑇

∗𝑆𝐻
∗

𝜇ℎ + 𝜇𝑑
,       𝑆𝑃

∗ =
Λ

𝛾𝑃𝐸𝑇
∗ + 𝜇𝑃 + 𝜌

 , 

 𝐼𝑃
∗ =

γPΛET
∗

(𝛾𝑃𝐸𝑇
∗ + 𝜇𝑃 + 𝜌)(𝜔 + 𝜇𝑃)

, 𝑃𝐼
∗ =

𝜔γPΛET
∗

(𝛾𝑃𝐸𝑇
∗ + 𝜇𝑃 + 𝜌)(𝜔 + 𝜇𝑃)(𝛼𝑃 + 𝛿)

,  

 𝑆𝐶
∗ =

𝜙

𝛾𝐶𝐸𝑇
∗ + 𝜎 + 𝜇𝐶

, 𝐼𝐶
∗ =

𝛾𝐶𝜙𝐸𝑇
∗

(𝛾𝐶𝐸𝑇
∗ + 𝜎 + 𝜇𝐶)(𝜂 + 𝜇𝐶)

, 

 𝐵𝐼
∗ =

𝜂𝛾𝐶𝜙𝐸𝑇
∗

(𝛾𝐶𝐸𝑇
∗ + 𝜎 + 𝜇𝐶)(𝜂 + 𝜇𝐶)(𝛼𝑏 + 𝜖)

. 

To obtain the expression for 𝐸𝑇
∗ , the polynomial (13) is solved to obtain its positive real roots. 

 

                                          𝑎0𝐸𝑇
∗3 + 𝑎1𝐸𝑇

∗2 + 𝑎2𝐸𝑇
∗ + 𝑎3 = 0,                                                      (13)   

where: 

𝑎0 = 1 > 0, 𝑎1 =
𝛼𝑃𝜔Λ𝛽𝑇

𝜃(𝛿 + 𝛼𝑃)(𝜇𝑃 + 𝜔)
+

𝛼𝑏𝜂𝜙𝛽𝑇
𝜃(𝜂 + 𝜇𝐶)(𝛼𝑃 + 𝜖)

+
𝜎 + 𝜇𝐶
𝛾𝐶

+
𝜌 + 𝜇𝑃
𝛾𝑃

+
𝜇ℎ
𝜃
> 0, 

 

 𝑎2 =
(𝜎+𝜇𝐶)(𝜌+𝜇𝑃 )

𝛾𝐶𝛾𝑃
+
𝜇ℎ(𝜎+𝜇𝐶)

𝜃𝛾𝐶
+
𝜇ℎ(𝜌+𝜇𝑃)

𝜃𝛾𝑃
+

𝛼𝑃𝜔Λ𝛽𝑇(𝜎+𝜇𝐶)

𝜃𝛾𝐶(𝛿+𝛼𝑃)(𝜔+𝜇𝑃)
+

𝛼𝑏𝜂𝜙𝛽𝑇(𝜌+𝜇𝑃)

𝜃𝛾𝑃(𝜂+𝜇𝐶)(𝛼𝑃 +𝜖)
− 

         (
𝜓𝜈𝛼𝑃𝜔Λ𝛽𝑇

𝜃𝜇ℎ𝜇𝑒(𝛿+𝛼𝑃)(𝜇𝑃+𝜔)
+

𝜈𝜓𝛼𝑏𝜂𝜙𝛽𝑇

𝜃𝜇ℎ𝜇𝑒(𝜂+𝜇𝐶)(𝛼𝑃 +𝜖)
), 

  

 𝑎3 =
𝜇ℎ(𝜎+𝜇𝐶)(𝜌+𝜇𝑃 )(1+𝑅0)(1−𝑅0)

𝜃𝛾𝐶𝛾𝑃
, 𝐹0 =

𝛼𝑃𝜔𝛾𝑃Λ

(𝛾𝑃𝐸𝑇
∗+𝜌+𝜇𝑃)(𝛿+𝛼𝑃)(𝜔+𝜇𝑃)

+
𝛼𝑏𝜂𝛾𝐶𝜙

(𝛾𝐶𝐸𝑇
∗+𝜎+𝜇𝐶)(𝜂+𝜇𝐶)(𝛼𝑏 +𝜖)

 .  

We apply the method in Okosun et al. (2016) to study the nature of roots for polynomial (13) 

when 𝑅0 < 1 and present the results in Table 2. 

 

Table 2: Number of Positive Real Roots for equation (13) 

Cases 𝑎0 𝑎1 𝑎2 𝑎3 𝑅0 No. of Sign 

Change 

No. of positive 

real Roots 

1 + + + + 𝑅0 < 1 0 0 

2 + + + − 𝑅0 > 1 1 1 

3 + + − + 𝑅0 < 1 2 0 𝑜𝑟 2 

4 + + − − 𝑅0 > 1 1 1 

 

Therefore when 𝑅0 > 1, there exists only one endemic equilibrium in the model system (1). 

Theorem 2 summarizes the results. 

 

Theorem 2: The system (1) has only one endemic equilibrium when 𝑅0 > 1. 

 

A Continuous Time Markov Chain Model 

Continuous time Markov chain (CTMC) 

stochastic models are important in disease 

modeling since they help to determine the 

chances of diseases’ extinction or outbreak. 

Unlike deterministic models that assume 

continuous changes in state variables, CTMC 

stochastic models consider discrete number of 

state variables. A CTMC model is usually 

formulated based on its deterministic model’s 

counterpart and the multitype branching 

process is adopted to find the likelihood of 

diseases’ extinction or outbreak. 

 

Formulation of CTMC Model 

Assumptions, notations and parameters 

that were used in deterministic model are used 

to formulate a CTMC stochastic model. Allow 

𝑍= [𝑆𝐻 , 𝐼𝐻𝑇 , 𝐼𝐻𝐶 , 𝑆𝑃 , 𝐼𝑃 , 𝑃𝐼 , 𝑆𝐶 , 𝐼𝐶 , 𝐵𝐼 , 𝐸𝑇]
𝑇   as 

the random vector for all discrete random 

variables of the CTMC model. Table 3 

summarizes the events and transition rates. 
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Table 3: Events and State Transitions 

Event Transition ∆�⃗⃗⃗� Rate of 

Transition 

Recruitment of 𝑆𝐻 (1,0,0,0,0,0,0,0,0,0) ΛH 

Human infection with infected pork (−1,1,0,0,0,0,0,0,0,0)       𝛼𝑃𝛽𝑇𝑃𝐼𝑆𝐻 

Human infection with infected beef (−1,1,0,0,0,0,0,0,0,0) 𝛼𝑏𝛽𝑇𝐵𝐼𝑆𝐻 

Human infection from environment (−1,1,0,0,0,0,0,0,0,0) 𝜃𝐸𝑇𝑆𝐻 

Natural death of 𝑆𝐻 (−1,0,0,0,0,0,0,0,0,0) 𝜇ℎ𝑆𝐻 

Natural death of 𝐼𝐻𝑇  (0, −1,0,0,0,0,0,0,0,0) 𝜇ℎ𝐼𝐻𝑇 

Natural death of 𝐼𝐻𝐶  (0,0, −1,0,0,0,0,0,0,0) 𝜇ℎ𝐼𝐻𝐶  

Disease induced death for 𝐼𝐻𝐶   (0,0, −1,0,0,0,0,0,0,0) 𝜇𝑑𝐼𝐻𝐶  

Recruitment of 𝑆𝑃 (0,0,0,1,0,0,0,0,0,0) Λ𝑃 

Slaughter of 𝑆𝑃 (0,0,0, −1,0,0,0,0,0,0) 𝜌𝑆𝑃 

Infection of 𝑆𝑃 (0,0,0, −1,1,0,0,0,0,0) 𝛾𝑃𝐸𝑇𝑆𝑃 

Natural death rate of 𝑆𝑃 (0,0,0, −1,0,0,0,0,0,0) 𝜇𝑃𝑆𝑃 

Slaughter of 𝐼𝑃 (0,0,0,0, −1,1,0,0,0,0) 𝜔𝐼𝑃 

Natural death rate of 𝐼𝑃 (0,0,0,0, −1,0,0,0,0,0) 𝜇𝑃𝐼𝑃 

Throwing of infected pork  (0,0,00,0, , −1,0,0,0,0) 𝛿𝑃𝐼  
Consumption of infected pork (0,0,00,0, −1,0,0,0,0) 𝛼𝑃𝐼 
Recruitment of 𝑆𝐶  (0,0,0,0,0,0,1,0,0,0) Λ𝐶  

Slaughter of 𝑆𝐶  (0,0,0,0,0,0, −1,0,0,0) 𝜎𝑆𝐶  

Infection of 𝑆𝐶  (0,0,0,0,0,0, −1,1,0,0) 𝛾𝑐𝐸𝑇𝑆𝐶  

Natural death rate of 𝑆𝐶  (0,0,0,0,0,0, −1,0,0,0) 𝜇𝑏𝑆𝐶 

Slaughter of 𝐼𝐶  (0,0,0,0,0,0,0, −1,1,0) 𝜂𝐼𝐶  

Natural death rate of 𝐼𝐶  (0,0,0,0,0,0,0, −1,0,0) 𝜇𝑏𝐼𝐶  

Throwing of infected beef (0,0,0,0,0,0,0,0, −1,0) 𝜖𝐵𝐼  
Consumption of infected beef  (0,0,0,0,0,0,0,0, −1,0) 𝛼𝑏𝐵𝐼  
Shedding of 𝐸𝑇 (0,0,0,0,0,0,0,0,0,1) 𝜈𝐼𝑇𝐻  

Natural death of 𝐸𝑇 (0,0,0,0,0,0,0,0,0, −1) 𝜇𝑒𝐸𝑇 

 

The value −1, 0 and 1 respectively 

represent, a decrease by 1, no change and 

increase by 1 in state variable from time 𝑡 to 

(𝑡 + ∆𝑡). 
The CTMC stochastic model is 

homogeneous in time and fulfills the Markov 

property which explains that the future state of 

the process depends on the current state (Allen 

2010, Maliyon et al. 2017). Using Markov 

assumptions, the time between events is 

exponentially distributed with parameter 

(Lahodny et al. 2015, Maliyoni et al. 2017): 

 

 

                    𝜓(𝑍) =  𝛬𝐻  + µℎ𝑁𝐻  + 𝛬𝑃  + µ𝑃𝑁𝑃  + 𝜌𝑆𝑃  + 𝜔𝐼𝑃  + (𝛿 + 𝛼𝑝)𝑃𝐼  + 𝛬𝐶  + µ𝑏𝑁𝐶  

+ 𝜈𝐼𝐻𝑇  + 𝜎𝑆𝐶 + 𝜂𝐼𝐶  + (𝜖 + 𝛼𝑏)𝐵𝐼  + µ𝑒𝐸𝑇  + 𝛽(𝛼𝑝𝑃𝐼  + 𝛼𝑏𝐵𝐼)𝑆𝐻  

+ 𝛾𝑝𝑆𝑃𝐸𝑇  + 𝛾𝑏𝑆𝐶𝐸𝑇 .                                                                                            (14) 

The Multitype Branching Process 

The multitype branching process is used in 

this work to investigate the dynamics of 

taeniasis and cysticercosis close to the disease-

free equilibrium (DFE) (Allen and Lahodny 

2012, Allen and van de Drissche 2013, 

Maliyoni et al. 2017). This approach is also 

adopted to determine disease extinction or 

outbreak probabilities. If only few infectives 

exist at the beginning of the disease outbreak, 

then there is a possibility for the disease to 

grow exponentially or die (Allen 2017). Pigs, 

cattle and humans who are susceptible are 

regarded to be at DFE, that is 𝑆𝑃
0 =  𝜙/(𝜎 +

µ𝑏), 𝑆𝐶
0 =  𝛬/(𝜌 + µ𝑝) and 𝑆𝐻

0 =  𝜓/µℎ 

(Lahodny and Allen 2013). Type 𝑖 infectious 

hosts are considered to infect a susceptible 
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individual of another type leading to type 𝑗 
infectious individuals. Type 𝑖 individuals who 

are infected are distinct from those produced 

by type 𝑖, 𝐼𝑖  or type 𝑗,𝐼𝑗, 𝑗 ≠  𝑖  (Allen and van 

den Drisssche 2013, Maliyoni et al. 2017). The 

initial susceptible human, pig and cattle 

populations are considered to be adequately 

large, that is 𝑆𝐻(0) ≈ 𝑁𝐻(0) = 𝑆𝐻
0  , 𝑆𝑃(0)  ≈

 𝑁𝑃(0)  =  𝑆𝑃
0 and 𝑆𝐶(0) ≈  𝑁𝐶(0) =  𝑆𝐶

0 

where 𝑁𝑃(0), 𝑁𝐶(0) and 𝑁𝐻(0) are the initial 

total populations for pigs, cattle and humans 

respectively. The offspring probability 

generating functions (pgfs) for infectious 

humans, cattle, taenia eggs, infectious beef 

and pork are defined which are then used to 

compute the probability of diseases’ 

extinction or outbreak (Kyvsgaard et al. 2007). 

Let 𝑍𝑗𝑖 for 𝑖, 𝑖 =  1,2, . . . , 𝑛 be the number 

of type 𝑗 individuals produced by type i 

infective. The offspring probability generating 

function (pgf) 𝑓𝑖 ∶  [0,1]
𝑛 → [0,1] for 

individuals of type 𝑖 if 𝐼𝑖(0)  =  1 and 𝐼𝑗(0)  =

 0, 𝑗 =  𝑖 is (Allen 2020, Lahodny and Allen, 

2013, Maliyoni, 20202):

 

𝑓𝑖(𝑣1, 𝑣2, … , 𝑣𝑛) = ∑ …∑ 𝑃𝑖(𝑟1, 𝑟2, … , 𝑟𝑛)𝑣1
𝑟1 …𝑣𝑛

𝑟𝑛 ,                                                             (15)  

∞

𝑟1=0

∞

𝑟𝑛=0

 

where 

 

𝑃𝑖(𝑟1, 𝑟2, … , 𝑟𝑛) = 𝑃𝑟𝑜𝑏{𝑍1𝑗 = 𝑟1, 𝑍2𝑗 = 𝑟2, … , 𝑍𝑛𝑗 = 𝑟𝑛}                                                            (16) 

 

is the probability that one infectious type 𝑖 individual produces 𝑛𝑗 infectious type 

𝑗 individuals. Equation (15) defines an 𝑛 × 𝑛 expectation matrix 𝑴 =  [𝑚𝑗𝑖] where 𝑚𝑗𝑖 is the 

expected number of type 𝑗 individuals produced by type 𝑖 infective. Matrix 𝑴 elements are non-

negative and they are obtained using the formula (Lahodny et al. 2015, Maliyoni 2020): 

 

                                                      𝑚𝑗𝑖 =
𝜕𝑓

𝜕𝑣𝑗
|
𝑣=1

   .                                                                               (17) 

 

If the spectral radius 𝜌(𝑴) ≤ 1, then the probability of disease extinction is one and if 

𝜌(𝑴) > 1 then there exists a positive number less than one which indicates that there is disease 

persistence, that is: 

 

        𝑃0 = lim
𝑡→∞

𝑃𝑟𝑜𝑏 {𝐼(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗} = 𝑞1
𝑖1𝑞2

𝑖2…𝑞𝑛
𝑖𝑛 < 1,                                                                     (18) 

where (𝑞1, 𝑞2, … , 𝑞𝑛) is the fixed point of the 𝑛 offspring pgf, 𝑓𝑖(𝑞1, 𝑞2, … , 𝑞𝑛) =  𝑞𝑖 and  

0 <  𝑞𝑖  <  1 for 𝑖 =  1, 2, . . . , 𝑛 (Kyvsgaard et al. 2007, Lahodny et al. 2015, Maliyoni et al. 

2017). The value of qi represents the probability of disease extinction for type i infectives and 

the probability of disease outbreak is given by (Maliyoni 2020, Maliyoni et al. 2017): 

                                                1 − 𝑃0  = 1 − 𝑞𝑞1
𝑖1𝑞2

𝑖2…𝑞𝑛
𝑖𝑛.                                                            (19)   

CTMC Stochastic Threshold for the Epidemic Model 

The multitype branching process is adopted to define the probability generating functions for 

all infectious classes. If there is only one human with taeniasis (𝐼𝐻𝑇(0)  =  1) at the beginning 

of the diseases’ outbreak and there are no other infectious classes, that is (𝐼𝐻𝐶(0)  =  0, 𝐼𝑃(0)  =
 0, 𝑃𝐼(0)  =  0, 𝐼𝐶(0)  =  0, 𝐵𝐼(0)  =  0 and 𝐸𝑇(0)  =  0), the offspring pgf for humans with 

taeniasis 𝐼𝑇𝐻 is: 

                                           𝑓1(𝑢1, 𝑢2, . . , 𝑢7) =  
𝜈𝑢1𝑢7 + 𝜇ℎ
𝜈 + 𝜇ℎ

 .                                                         (20) 

The expression 𝜈/(𝜈 + µℎ) represents the likelihood that the initial infectious human 

defecates a taenia egg in the environment, leading to one human with taeniasis and a taenia egg 
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in the environment. The likelihood that an initial human with taeniasis dies due to natural death 

leading to no infectious human with taeniasis is given by µℎ/(𝜈 +  µℎ). 
Since humans who are infected with cysticercosis do not play any role in the spread of the 

disease, therefore the offspring pgf for 𝐼𝐻𝐶  given that 𝐼𝐻𝑇(0)  =  0, 𝐼𝐻𝐶(0)  =  1, 𝐼𝑃(0)  =
 0, 𝑃𝐼(0)  =  0, 𝐼𝐶(0)  =  0, 𝐵𝐼(0)  =  0, 𝐸𝑇(0)  =  0 is: 

 

                     𝑓2(𝑢1, 𝑢2, . . . , 𝑢7) =  1.                                                                                                      (21) 
 

The offspring pgf for 𝐼𝑃 given that 𝐼𝐻𝑇(0)  =  0, 𝐼𝐻𝐶(0)  =  0, 𝐼𝑃(0)  =  1, 𝑃𝐼(0)  =
 0, 𝐼𝐶(0)  =  0, 𝐵𝐼(0)  =  0, 𝐸𝑇(0)  =  0 is: 

 

                 𝑓3(𝑢1, 𝑢2, . . . , 𝑢7) =
𝜔𝑢4+𝜇𝑃

𝜔+𝜇𝑃
.                                                                                       (22)   

 

The term 𝜔/(𝜔 +  µ𝑝) is the probability for the initial infected pig to be slaughtered for con 

sumption leading to the presence of infectious pork only whereas µ𝑝/(𝜔 + µ𝑝) is the probability 

for the initial infected pig to die naturally resulting to no infected pigs and infectious pork. 

The offspring pgf for 𝑃𝐼  given that 𝐼𝐻𝑇(0)  =  0, 𝐼𝐻𝐶(0)  =  0, 𝐼𝑃(0)  =  0, 𝑃𝐼(0)  =
 1, 𝐼𝐶(0) =  0, 𝐵𝐼(0)  =  0, 𝐸𝑇(0)  =  0 is: 

 

               𝑓4(𝑢1, 𝑢2, . . . , 𝑢7) =
𝛽𝑇𝛼𝑝𝑆𝐻

0𝑢1𝑢4  +  𝛿

𝛽𝑇𝛼𝑝𝑆𝐻
0 + 𝛿

  .                                                                       (23) 

The term 𝛽𝑇𝛼𝑝𝑆𝐻
0/(𝛽𝑇𝛼𝑝𝑆𝐻

0 + 𝛿) is the probability that a proportion of initial infectious pork 

is consumed by a susceptible human whereas 𝛿/(𝛽𝑇𝛼𝑝𝑆𝐻
0  + 𝛿) is the probability that the initial 

infectious pork is thrown following meat inspection leading to no infectious pork. 

The offspring pgf for 𝐼𝐶  given that 𝐼𝐻𝑇(0) = 0, 𝐼𝐻𝐶(0) = 0, 𝐼𝑃(0) = 0, 𝑃𝐼(0) = 1, 𝐼𝐶(0) =
1, 𝐵𝐼(0) = 0, 𝐸𝑇(0) = 0 is: 

 

              𝑓5(𝑢1, 𝑢2, . . . , 𝑢7) =
𝜂 𝑢6 + 𝜇𝑏
𝜂 + 𝜇𝑏

.                                                                                          (24) 

The expression µ𝑏/(𝜂 + µ𝑏) represents the chance that the initial infectious cattle may die 

before being slaughtered, leaving zero infectious cattle and infectious beef. The term 𝜂/(𝜂 +
 µ𝑏) represents the likelihood that the initial infectious cattle is slaughtered for consumption, 

resulting in the presence of infectious beef only. 

The offspring pgf for 𝐵𝐼  given that 𝐼𝐻𝑇(0) = 0, 𝐼𝐻𝐶(0) = 0, 𝐼𝑃(0) = 0, 𝑃𝐼(0) = 1, 𝐼𝐶(0) =
1, 𝐵𝐼(0) = 1, 𝐸𝑇(0)  =  0 is: 

 

     𝑓6(𝑢1, 𝑢2, . . . , 𝑢7) =
𝛽𝑇𝛼𝑏𝑆𝐻

0𝑢1𝑢6  +  𝜖

𝛽𝑇𝛼𝑏𝑆𝐻
0 + 𝜖

 .                                                                                   (25) 

The term 𝛽𝑇𝛼𝑏𝑆𝐻
0/(𝛽𝑇𝛼𝑏𝑆𝐻

0 + 𝜖) denotes the probability that a proportion of initial infectious 

beef consumed by a susceptible human. The term 𝜖/(𝛽𝑇𝛼𝑏𝑆𝐻
0 + 𝜖) is the probability that the 

initial infectious beef is thrown before consumption following meat inspection resulting to no 

infectious beef and thus no human with taeniasis. 

The offspring pgf for 𝐸𝑇 given that 𝐼𝐻𝑇(0) = 0, 𝐼𝐻𝐶(0) = 0, 𝐼𝑃(0) = 0, 𝑃𝐼(0) = 1, 𝐼𝐶(0) =
 1, 𝐵𝐼(0) = 0, 𝐸𝑇(0) = 1 is: 

 

𝑓7(𝑢1, 𝑢2, … , 𝑢7) =
𝜃𝑆𝐻

0𝑢2𝑢7 + 𝛾𝑃𝑆𝑃
0𝑢3𝑢7 + 𝛾𝑏𝑆𝐶

0𝑢5𝑢7 + 𝜇𝑒

𝜃𝑆𝐻
0 + 𝛾𝑃𝑆𝑃

0 + 𝛾𝑏𝑆𝐶
0 .                                                 (26) 

The term 𝜃𝑆𝐻
0/(𝜃𝑆𝐻

0 + 𝛾𝑃𝑆𝑃
0 + 𝛾𝑏𝑆𝐶

0 + µ𝑒) is the probability that the initial taenia egg infects 

a susceptible human resulting to one human with cysticercosis and a taenia egg. The term 
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𝛾𝑃𝑆𝑃
0/(𝜃𝑆𝐻

0 + 𝛾𝑃𝑆𝑃
0 + 𝛾𝑏𝑆𝐶

0 + 𝜇𝑒) represents the likelihood that a susceptible pig becomes 

infected by the initial taenia egg, resulting in one infected pig and one taenia egg. The expression 

𝛾𝑏𝑆𝐶
0 /(𝛾𝑃𝑆𝑃

0 + 𝛾𝑏𝑆𝐶
0 + µ𝑒) denotes the likelihood that a susceptible cattle will be infected by the 

initial taenia egg, producing one infectious cattle and one taenia egg, where as µ𝑒/(𝜃𝑆𝐻
0 +

 𝛾𝑃𝑆𝑃
0 + 𝛾𝑏𝑆𝐶

0  + µ𝑒) is the likelihood that a taenia egg will die naturally. 

The expectation matrix M for the offspring pgfs is given by: 

 

𝑴 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜈

𝜈 + 𝜇ℎ
0 0

𝛽𝑇𝛼𝑃𝑆𝐻
0

𝛽𝑇𝛼𝑃𝑆𝐻
0 + 𝛿

0
𝛽𝑇𝛼𝑏𝑆𝐻

0

𝛽𝑇𝛼𝑏𝑆𝐻
0 + 𝜖

0

0 0 0 0 0 0
𝜃𝑆𝐻

0

𝐽

0 0 0 0 0 0
𝛾𝑃𝑆𝑃

0

𝐽

0 0
𝜔

𝜔 + 𝜇ℎ

𝛽𝑇𝛼𝑃𝑆𝐻
0

𝛽𝑇𝛼𝑃𝑆𝐻
0 + 𝛿

0 0 0

0 0 0 0 0 0
𝛾
𝑏
𝑆𝐶
0

𝐽

0 0 0 0
𝜂

𝜂 + 𝜇ℎ

𝛽𝑇𝛼𝑏𝑆𝐻
0

𝛽𝑇𝛼𝑏𝑆𝐻
0 + 𝜖

0

𝜈

𝜈 + 𝜇ℎ
0 0 0 0 0

𝜃𝑆𝐻
0 + 𝛾𝑃𝑆𝑃

0 + 𝛾𝑏𝑆𝐶
0

𝐽 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

where  𝐽 = 𝜃𝑆𝐻
0 + 𝜃𝑆𝐻

0 + 𝜃𝑆𝐻
0 + 𝜇𝑒. 

The spectral radius of the expectation matrix 𝜌(𝑴), serves as the stochastic threshold for 

disease extinction or outbreak in humans, pigs and cattle for the CTMC stochastic model. The 

stochastic threshold 𝜌(𝑴) for CTMC stochastic model and the basic reproduction number 𝑅0 for 

deterministic model have a close relationship (Maliyoni et al. 2017). The disease dies in human, 

pigs and cattle if 𝜌(𝑴) ≤ 1 or 𝑅0 ≤ 1. In deterministic models, the diseases persist in humans, 

pigs and cattle if 𝑅0 > 1. However, this is not realistic because if there are only few infectives 

at the beginning of the disease outbreak, there is a possibility for these infectives to die, recover 

or be removed before transmitting the disease (Mwasunda et al. 2022). Therefore, in stochastic 

models, if 𝜌(𝑴) > 1 there is a possibility for disease outbreak or extinction depending on 

number of infectives that were initially available at the outset of the disease outbreak (Allen and 

van de Drisssche 2013, Lahodny and Allen 2013, Maliyoni 2020). Thus, if 𝜌(𝑴) > 1, there exist 

a fixed point (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7) ∈ (0,1)
7 of the offspring generating functions (20)-(26) 

that is used in writing the probability of disease extinction (Allen and Lahodny 2012, Maliyoni 

et al. 2017). To get the fixed point, we set 𝑓𝑖(𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7) = 𝑞𝑖 𝑓𝑜𝑟 𝑖 = 1, 2, . . ,7. That 

is:

                                                  𝑞1  =
𝜈𝑞1𝑞7+𝜇ℎ

𝜈+𝜇ℎ
 , 𝑞2 = 1, 𝑞3 =

𝜔𝑞4+𝜇𝑃

𝜔+𝜇𝑃
 ,                                              

                                                 𝑞4 =
𝛽𝑇𝛼𝑃𝑆𝐻

0𝑞1𝑞4 + 𝛿

𝛽𝑇𝛼𝑃𝑆𝐻
0 + 𝛿

, 𝑞5 =
𝜂 𝑞6 + 𝜇𝑏
𝜂 + 𝜇𝑏

,                                      (27) 

𝑞6 =
𝛽𝑇𝛼𝑏𝑆𝐻

0𝑞1𝑞6  +  𝜖

𝛽𝑇𝛼𝑏𝑆𝐻
0 + 𝜖

,                              

                                            𝑞7 =
𝜃𝑆𝐻
0𝑞2𝑞7+𝛾𝑃𝑆𝑃

0𝑞3𝑞7+𝛾𝑏𝑆𝐶
0𝑞5𝑞7+𝜇𝑒

𝜃𝑆𝐻
0+𝛾𝑃𝑆𝑃

0+𝛾𝑏𝑆𝐶
0 .           

Due to non-linearity of probability 

generating functions (pgf) particularly the pgf 

in (27), qi’s are computed through numerical 

simulations. 
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Numerical Simulations 

To study the transmission dynamics of 

cysticercosis and taeniasis in human, pig and 

cattle populations, we first simulate the basic 

model system (1) and then with its 

corresponding CTMC stochastic model for 

comparison purposes using the parameter 

values in Table 1. We apply the initial 

conditions: 

                  𝐼𝐻𝑇(0) = 1, 𝐼𝐻𝐶(0) = 0, 𝑆𝐻(0) =  21,275, 𝐼𝑃(0) =  1, 𝑃𝐼(0) =  1, 𝑆𝑃(0) =  118, 
 𝐼𝐶(0) =  1, 𝐵𝐼(0) =  1, 𝑆𝐶(0) =  220, 𝐸𝑇(0) =  2.                                                                  (28) 

 

Basic Model Simulation 

The basic model results in Figure 2 

indicate that all susceptible humans, pigs and 

cattle becomes infected and thus decline with 

time whereby some proportions of these 

populations become uninfected. Infected 

classes for humans, pigs and cattle initially 

increase rapidly in the first 10 years and then 

slowly to settle at their steady states. These 

trends are in correspondence with the growth 

of taenia eggs in the environment that infects 

both susceptible humans, pigs and cattle; and 

the available infectious beef and pork that is 

consumed by susceptible humans. The trends 

signify that the taeniasis and cysticercosis will 

continue to persist in these population if 

measures are not taken to control the diseases. 
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CTCM Model Simulation 

In this section, the deterministic model (1) 

is simulated with its corresponding CTMC 

stochastic model to study the dynamics of 

cysticercosis and taeniasis in pig, human and 

cattle populations. Simulation results are 

presented in Figures 3 and 4. The results show 

that CTMC model solutions are relatively 

close to the corresponding deterministic 

model solutions. CTMC model results 

fluctuates with the solutions of deterministic 

model. 
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The likelihood of Outbreak or Extinction of 

Taeniasis and Cysticercosis 

Using 10,000 sample paths of the CTMC 

stochastic model, the multitype branching 

process is used to calculate the approximate 

probability of disease extinction 𝑃𝑎. The 

approximation used in CTMC model 

simulation is the number of sample pathways 

that hit zero prior to the disease outbreak. The 

probabilities are calculated through varying 

the initial number of infectives. Depending on 

the initial number of infectives at the 

beginning of the disease outbreak, Figure 5 

shows that some sample paths of the CTMC 

stochastic model hit zero, indicating the 

possibility of taeniasis and cysticercosis to 

clear in humans, pigs and cattle even if the 

stochastic threshold 𝜌(𝑴) is greater than one. 

When  𝐼𝐻𝑇(0) = 𝑦1 = 1, 𝐼𝐻𝐶(0) = 𝑦2 =
0, 𝐼𝑃(0) = 𝑦3 = 1, 𝑃𝐼(0) = 𝑦4 = 0, 𝐼𝐶(0) =
𝑦5 = 1, 𝐵𝐼(0) = 𝑦6 = 0, 𝐸𝑉(0) = 𝑦7 = 1  

for instance, as seen in Figures 5 and 6, some 

sample trajectories of the CTMC model hit 

zero despite 𝑅0 = 19.4975 > 1 and 𝜌(𝑴) =
 1.5877 > 1. This indicates that the 

population following this sample path is 

rapidly absorbed and eventually approaches 

the disease-free equilibrium. On the other 

hand, when a significant number of infectious 

individuals is introduced into the susceptible 

population, the diseases will not eventually 

become extinct as seen in Figures 2 and 3 

using initial conditions from equation (28).  
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Findings in Table 4 demonstrate that the 

dynamics of the disease are influenced by the 

initial number of infectious agents introduced 

into susceptible populations. The data also 

show that if the diseases originate from a small 

number of Taenia eggs, there is a very high 

possibility that they will eventually go to 

extinction. This is due to the fact that the initial 

number of taenia eggs will decay with time 

and exhaust as there are no individuals who 

are shedding eggs in the environment. If the 

diseases originate from humans who have 

cysticercosis, they are likely to automatically 

go to extinction because humans with 

cysticercosis are just dead-end hosts. There is 

a major outbreak of taeniasis and cysticercosis 

if the diseases emerge from humans with 

taeniasis or from infectious pork and beef.  

This is because humans with taeniasis will 

continue to shed eggs in the environment 

consequently affecting humans, pigs and 

cattle. Upon consumption of infectious pork 

and beef, repeats the cycle of the diseases. In 

all other cases, there is a chance of a 

significant disease outbreak in humans, pigs, 

and cattle where the probability of disease 

extinction is either very low or zero. These 

findings indicate that the best interventions for 

controlling cysticercosis and taeniasis in pigs, 

humans, and cattle focus on lowering the 

number of taeniasis-infected humans as well 

as infectious pork and beef at the onset of the 

disease outbreak. 
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Table 4: Probability of Disease Extinction 

 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑃𝑎 

1 0 0 0 0 0 0 0.0008 

0 1 0 0 0 0 0 1.0000 

1 1 0 0 0 0 0 0.0013 

0 0 0 0 0 0 1 0.5076 

0 0 0 0 1 0 0 0.0241 

0 0 0 0 0 1 0 0.0015 

0 0 0 0 1 1 0 0.0000 

0 0 1 0 0 0 0 0.0809 

0 0 0 1 0 0 0 0.0170 

0 0 1 1 0 0 0 0.0011 

1 1 1 1 0 0 0 0.0000 

1 1 0 0 1 1 0 0.0000 

1 1 0 0 0 0 1 0.0003 

0 0 0 0 1 1 1 0.0000 

0 0 1 1 0 0 1 0.0008 

0 0 1 1 1 1 0 0.0000 

0 0 1 1 1 1 1 0.0000 

1 1 1 1 1 1 1 0.0000 

 

Conclusion 

In this study, the continuous-time Markov 

chain (CTMC) stochastic model that 

corresponds to the deterministic model for the 

transmission dynamics of cysticercosis and 

taeniasis in human, pig, and cattle populations 

is studied and carefully analyzed. To ascertain 

whether the diseases may die or endure in 

humans, pigs, and cattle, the basic 

reproduction 𝑅0  for the deterministic model is 

computed through the next generation matrix 

approach. The stochastic threshold 𝜌(𝑴) for 

the CTMC stochastic model is computed 

through the multitype branching process, 

which offers the prerequisites for the 

emergence or extinction of the diseases. In 

general, cysticercosis and taeniasis disappear 

in humans, pigs, and cattle if 𝑅0 < 1 and 

𝜌(𝑀) <1 the diseases persist in humans, pigs, 

and cattle, whereas if 𝜌(𝑴) > 1 the diseases 

may spread or disappear depending on the 

initial number of infectious agents. Numerical 

results for probability of disease extinction 𝑃𝑎 

is computed from the multitype branching 

process using 10,000 sample paths. According 

to the findings, there is a good chance that 

taeniasis and cysticercosis will go-extinct if 

they develop from a number of taenia eggs, 

and they will also likely go extinct if they 

develop from cysticercosis-infected humans. 

There is a major outbreak of taeniasis and 

cysticercosis if the diseases emerge from 

humans with taeniasis or from infectious pork 

and beef.  Therefore, to control the disease 

outbreak in humans, pigs, and cattle, 

interventions that focus on the control of 

humans with taeniasis and consumption of 

infectious beef and pork at the onset of the 

disease.  Focus on the control of humans with 

taeniasis and consumption of infectious beef 

and pork at the onset of the disease outbreak 

are necessary. 
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