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Abstract 

In this paper, we explore the framework of  𝓕-metric space, a well-known generalization of 

metric spaces, and establish fixed point results for 𝛽-𝜓-𝜑 contractive mappings in a complete 

𝓕-metric spaces endowed with L-fuzzy mappings. These additions broaden the body of 

knowledge in fixed point theory and fuzzy mappings. We showcase the practical applicability of 

our proposed results through illustrative examples and also, explore as an application, the 

solution for fuzzy initial-value problems. 
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Introduction  

The most basic outcome of metric fixed 

point theory is the classical Banach 

Contraction Principle, which is used to prove 

the existence of solutions to nonlinear integro-

differential equations, Fredholm integral 

equations, and Volterra integral equations. 

However, many issues that arise in daily life 

are caused by incomplete data that is difficult 

to convey in traditional mathematics. In 1965, 

Zadeh (1965) introduced the notion of fuzzy 

sets, that proffer efficient means to handle 

imprecise information, laying the foundation 

for subsequent research in fuzzy mathematics. 

Building upon Zadeh's work, Goguen (1967) 

substituted the fully distributive lattice L for 

the interval [0, 1] by extending the idea of a 

fuzzy set to an L-fuzzy set. Heilpern (1981), 

further extended the notion of fuzzy mappings 

and derived fixed point results in the metric 

linear space. For more, we refer (Azam (2011), 

Abdullahi (2021), Ibrahim et al. (2024)) 

 

Rashid et al. (2014) introduced the 

conception of 𝛽ℱ𝐿-admissible for two L-fuzzy 

mappings and derived numerous results for 

these mappings. Moreover, Jleli and Samet 

(2018) introduced a contemporary metric 

space, which is referred to as 𝓕-metric space, 

to extend the classical metric space. In this 

direction, Alansari et al. (2020) used this 

concept and proved some fixed point results in 

𝓕-metric space with some open problems such 

as fixed point theorems for L-fuzzy mappings. 

The existence of fixed point results was 

established by Samet et al. (2012) when they 

presented a novel class of contractive type 

mappings known as β-𝜓 contractive type 

mapping and β-admissible mappings in metric 

spaces. Further, Raji (2023) generalized the 

concept of 𝛽-𝜓 contractive type mappings and 

obtained various common fixed point results 

for this generalized class of contractive 

mappings. Further results can be found in 
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(Karapinar and Sameet 2012, Kumar et al. 

2022, Pathak et al. 2023, Rashid et.al 2014, 

Raji et.al. 2024, Sanatee et al. 2023, Shahi et 

al. 2022). 

Lateef (2024) recently proposed the idea of 

𝓕-metric space as a generalization of 

traditional metric space. They established 

several common fixed point theorems for (β-

𝜓)-contractions and proved the Banach 

contraction principle in the context of this 

generalized metric space. Based on the above 

insight, we establish fixed point results for 𝛽-

𝜓-𝜑 contractive mappings in 𝓕-metric spaces 

for L-fuzzy mappings within the framework of 

complete 𝓕-metric spaces. To bolster our 

findings, we offer illustrative examples 

demonstrating the practical application of the 

presented results. Also, we explored as an 

application, the solution for fuzzy initial-value 

problems. 

 

Materials and Methods  

This study is purely theoretical, grounded in 

pure mathematics. The study will utilize 

mathematical concepts such as convergent 

sequences, operators, various types of 

mappings, abstract spaces, completeness, 

contraction mappings, iterative methods, 

Integrals, and differential equations. 

Definitions, lemmas, propositions, and 

theorems derived from these concepts will be 

employed to establish the main results.  

 

Preliminaries 

We begin this section by presenting the concept of 𝛽-𝜓- 𝜑 contractive and 𝛽-admissible 

mappings.  

Now, we denote Ψ the collections of nondecreasing functions Ψ: [0,∞) → [0,∞) such that 

∑𝜓𝑛(𝑡) < ∞

+∞

𝑛=1

 

for each 𝑡 > 0, where 𝜓𝑛 is the n-th iterate of 𝜓. 

Definition 2.1 (Raji et al. 2024) Let 𝑋 be a nonempty set, 𝑑 be a metric such that (𝑋, 𝑑) is a 

metric space and 𝑇: 𝑋 → 𝑋 be a mapping. 𝑇 is referred to as 𝛽-𝜓 contractive if there exist a (c)-

comparison functions 𝜓 ∈ Ψ and a function 𝛽: 𝑋 × 𝑋 → ℝ such that 

                         𝛽(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈ 𝑋.                                      (2.1)  

Definition 2.2 (Karapinar and Samet 2012, Raji et al. 2004) Let 𝑋 be a nonempty set, 𝑇: 𝑋 → 𝑋 

and 𝛽: 𝑋 × 𝑋 → ℝ+. Then, 𝑇 is referred to as 𝛽-admisible mapping if for 

                                        𝑥, 𝑦 ∈ 𝑋, 𝛽(𝑥, 𝑦) ≥ 1 ⟹ 𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1.                               (2.2) 

Definition 2.3 Let Φ be the set of all function 𝜑: [0,∞)
5
→ [0,∞) satisfying the following: 

(i) 𝜑 is continuous,    

(ii) 𝜑(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) = 0 if and only if 𝑡1𝑡2𝑡3𝑡4𝑡5 = 0. 

Example 2.4 The following function 𝜑: [0,∞)
5
→ [0,∞) belong to Φ. 

(i) 𝜑(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) = 𝑡1𝑡2𝑡3𝑡4𝑡5. 

(ii) 𝜑(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) = 𝑒
𝑡1𝑡2𝑡3𝑡4𝑡5 − 1. 

(iii) 𝜑(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5) = 𝑙𝑛(1 + 𝑡1𝑡2𝑡3𝑡4𝑡5). 
Definition 2.5 A function 𝑇 from a metric space (𝑋, 𝑑) into itself is said to be 𝛽-𝜓-𝜑 contraction 

if there exist a function 𝜓: [0,∞) → [0,∞) and 𝜑: [0,∞)
5
→ [0,∞) satisfying  

   𝛽(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)) −

𝜑(𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)), ∀𝑥, 𝑦 ∈ 𝑋.    

                                                                                                                                           (2.3) 
 Definition 2.6 (Mohammed et al. 2021, Rashid et al. 2014) Let 𝐿 ≠ ∅ and ≼𝐿 be partial order 

set and (𝐿, ≼𝐿) be a partially ordered set.  

(i) For any 𝑥, 𝑦 ∈ 𝐿, 𝑥 ∨ 𝑦 ∈ 𝐿, 𝑥 ∧ 𝑦 ∈ 𝐿, then 𝐿 is referred to as lattice. 

(ii) For any Ω ∈ 𝐿, ∨ Ω ∈ 𝐿, ∧ Ω ∈ 𝐿, then 𝐿 referred to as complete lattice. 

(iii) For any 𝑥, 𝑦, 𝑧 ∈ 𝐿, 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧), 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧), then 

𝐿 is referred to as distributive lattice. 
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Definition 2.7 (Kanwal et al. 2022, Al Rawashdeh et al. 2018) Let 𝐿-fuzzy set Ω on a nonempty 

set 𝑋. A function Ω: 𝑋 → 𝐿, where 𝐿 satisfies (iii) of definition 2.6 with 1𝐿 (top element) and 

0𝐿(bottom element). 

The 𝛼𝑳-level set of Ω is denoted by Ω𝛼𝑳 define as   

                                                  Ω𝛼𝑳 = {𝑥: 𝛼𝑳 ≼𝐿 Ω(𝑥)} if 𝛼𝑳 ∈ 𝐿\{0𝐿}, 

Ω0𝑳 = {𝑥: 0𝑳 ≼𝐿 Ω(𝑥)}.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Then, 𝓕𝑳(𝑋) and cl(Ω) denotes 𝐿-fuzzy set on 𝑋 and closure of Ω. 

Define  

𝑋𝐿∧ = {
0𝑳, 𝑖𝑓 𝑥 ∉ Ω
1𝑳, 𝑖𝑓 𝑥 ∈ Ω,

 

The characteristic function 𝑋𝐿∧ of 𝐿-fuzzy set Ω.  

We now, introduce 𝓕-metric space as follows:      

Let 𝑔: (0, +∞) → ℝ. The set 𝓕 is defined as the collection of functions 𝑔 satisfying the 

following: 

(𝓕𝟏) 0 < 𝑥 < 𝑡 ⇒ 𝑔(𝑥) ≤ 𝑔(𝑡), 
(𝓕𝟐) for the sequence {𝑥𝑛} ⊆ ℝ+, lim

𝑛→∞
𝑥𝑛 = 0 ⇔ lim

𝑛→∞
𝑔(𝑥𝑛) = −∞ . 

Definition 2.8 (Jleli and Samet 2018) Let 𝑋 be nonempty set and 𝑑𝓕: 𝑋 × 𝑋 → [0, +∞). Suppose 

there exists (𝑔, ℎ) ∈ 𝓕 × [0, +∞) such that 

(i) (𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝑑𝓕(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦, 
(ii) 𝑑𝓕(𝑥, 𝑦) = 𝑑𝓕(𝑦, 𝑥), for all (𝑥, 𝑦) ∈ 𝑋 × 𝑋,  
(iii) for every (𝑥, 𝑦) ∈ 𝑋 × 𝑋, for every 𝑁 ∈ ℕ,𝑁 ≥ 2, and for each (𝑢𝑖)𝑖=1

𝑁 ⊂ 𝑋 with (𝑢1, 𝑢𝑁) =
(𝑥, 𝑦), we have 

                             𝑑𝓕(𝑥, 𝑦) > 0 ⇒ 𝑔(𝑑𝓕(𝑥, 𝑦)) ≤ 𝑔[∑ 𝑑𝓕(𝑥𝑖 , 𝑥𝑖+1)
𝑁−1
𝑖=1 ] + ℎ. 

Then, 𝑑𝓕 is referred to as 𝓕-metric on 𝑋 and (𝑋, 𝑑𝓕) called 𝓕-metric space.   

Example 2.9 (Jleli and Samet 2018) Let 𝑑𝓕: ℝ × ℝ → [0,+∞) be a function defined by 

                                     𝑑𝓕(𝑥, 𝑦) = {
(𝑥 − 𝑦)2, 𝑖𝑓 (𝑥, 𝑦) ∈ [0,3] × [0,3]

|𝑥 − 𝑦|, 𝑖𝑓 (𝑥, 𝑦) ∉ [0,3] × [0,3],
 

with 𝑔(𝑡) = ln(𝑡) and ℎ = ln(3), is 𝓕-metric. 

Definition 2.10 (Jleli and Samet 2018) Let (𝑋, 𝑑𝓕) be 𝓕-metric space. 

(i) Let {𝑥𝑛} ⊆ 𝑋. The sequence {𝑥𝑛} is referred to as 𝓕-convergent to 𝑥 ∈ 𝑋 if {𝑥𝑛} is convergent 

to 𝑥 in 𝓕-metric 𝑑𝓕.      

(ii) The sequence {𝑥𝑛} is referred to as 𝓕-Cauchy, iff  

lim
𝑛,𝑚→∞

𝑑𝓕(𝑥𝑛 , 𝑥𝑚) = 0. 

(iii) If for each 𝓕-Cauchy sequence in 𝑋 is 𝓕-convergent to 𝑥 ∈ 𝑋, then (𝑋, 𝑑𝓕) is 𝓕-complete.   

Lemma 2.11 (Jleli and Samet 2018) Assume 𝑋1 and 𝑋2 be nonempty compact subsets of 𝓕-

metric space (𝑋, 𝑑𝓕) that is closed, if 𝑥 ∈ 𝑋1, then 

                                                                  𝑑𝓕(𝑥, 𝑋2) ≤ 𝐻𝓕(𝑋1, 𝑋2),  where 𝐻𝐹(𝑋1, 𝑋2) denotes 

the Hausdorff distance between the sets 𝑋1 and 𝑋2, defined as the greatest distance between any 

point in one set to the closest point in the other set. 

Lemma 2.12 (Lateef 2024) Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝑋1 be nonempty closed subsets 

of 𝑋 and 𝑞 > 1. Then, for each 𝑥 ∈ 𝑋 with 𝑑𝓕(𝑥, 𝑋1) > 0, there exists 𝑦 ∈ 𝑋1 such that 

                                                                   𝑑𝓕(𝑥, 𝑦) < 𝑞𝑑𝓕(𝑥, 𝑋1). 
Definition 2.13 (Raji and Ibrahim 2024) Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) ×
(𝑋, 𝑑𝓕) → [0, +∞). Let 𝑇, 𝑓 be a pair of fuzzy mappings from 𝑋 into 𝓕𝐿(𝑋). Then, the pair 

(𝑇, 𝑓) is referred to as an 𝛼𝓕-admissible if: 

(i) for a point 𝑥 ∈ 𝑋 and 𝑦 ∈ [𝑇𝑥]𝛼𝑻(𝑥), where 𝛼𝑻(𝑥) ∈ (0,1] with 𝛽(𝑥, 𝑦) ≥ 1, then, 𝛽(𝑦, 𝑧) ≥

1, for all 𝑧 ∈ [𝑓𝑦]𝛼𝒇(𝑦) ≠ ∅ where 𝛼𝒇(𝑦) ∈ (0,1], 
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(ii) for a point 𝑥 ∈ 𝑋 and 𝑦 ∈ [𝑓𝑥]𝛼𝑻(𝑥), where 𝛼𝒇(𝑥) ∈ (0,1] with 𝛽(𝑥, 𝑦) ≥ 1, then, 𝛽(𝑦, 𝑧) ≥

1, for all 𝑧 ∈ [𝑇𝑦]𝛼𝑻(𝑦) ≠ ∅ where 𝛼𝑻(𝑦) ∈ (0,1]. 

 

Main Results 

Theorem 3.1. Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑇 be a L-

fuzzy mapping from (𝑋, 𝑑𝓕) into 𝓕𝐿(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete, 

(ii) for a point 𝑥0 ∈ 𝑋 there exists 𝛼𝑳(𝑥) ∈ 𝐿\{0𝐿} such that 𝑥1 ∈ [𝑇𝑥0]𝛼𝓕(𝑥0) with 𝛽(𝑥0, 𝑥1) ≥

1, 

(iii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that  

                                              𝛽(𝑥, 𝑦)𝐻𝓕([𝑇𝑥]𝛼𝑳(𝑥), [𝑇𝑦]𝛼𝑳(𝑦)) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑 (𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼𝑳(𝑥)), 𝑑(𝑦, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑥, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑦, [𝑇𝑥]𝛼𝑳(𝑥))),                   (3.1) 

(iv) 𝑇 is 𝛽𝓕-admissible, 

(v) for all 𝑛, {𝑥𝑛} is a sequence in 𝑋 such that 𝛽(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 

there exists 𝛽(𝑥𝑛 , 𝑥) ≥ 1 for all 𝑛.  

Then, 𝑇 has a fixed point 𝑥∗ ∈ [𝑇𝑥∗]𝛼𝓕(𝑥∗).  

Proof By condition (ii), we can choose a point 𝑥0 ∈ 𝑋, there exists 𝛼𝑳(𝑥0) ∈ 𝐿\{0𝐿} such that 

[𝑇𝑥0]𝛼𝑳(𝑥0) is nonempty and there exists a point 𝑥1 ∈ [𝑇𝑥0]𝛼𝑳(𝑥0) with 𝛽(𝑥0, 𝑥1) ≥ 1. Again, for 

𝑥1, there exists 𝛼𝑳(𝑥1) ∈ 𝐿\{0𝐿} such that [𝑇𝑥1]𝛼𝑳(𝑥1) ∈ 𝐶𝐵(𝑋).   

With (3.1) and Lemma 2.11, we have 

                                                            0 < 𝑑𝓕(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1))  

                                                               ≤ 𝐻𝓕([𝑇𝑥0]𝛼𝑳(𝑥0), [𝑇𝑥1]𝛼𝑳(𝑥1))  

                                                               ≤ 𝛽(𝑥0, 𝑥1)𝐻𝓕([𝑇𝑥0]𝛼𝑳(𝑥0), [𝑇𝑥1]𝛼𝑳(𝑥1))  

                                                               ≤ 𝜓(𝑑𝓕(𝑥0, 𝑥1)) −

𝜑 (𝑑(𝑥0, 𝑥1), 𝑑(𝑥0, [𝑇𝑥0]𝛼𝑳(𝑥0)), 𝑑(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥0, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥1, [𝑇𝑥0]𝛼𝑳(𝑥0))) 

≤ 𝜓(𝑑𝓕(𝑥0, 𝑥1)) − 𝜑 (𝑑(𝑥0, 𝑥1), 𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥0, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥1, 𝑥1)) 

By Definition 2.3, we obtain 

                                                           ≤ 𝜓(𝑑𝓕(𝑥0, 𝑥1))                                            (3.2) 

Then, by Lemma 2.12, for 𝑞 > 1, there exists 𝑥2 ∈ [𝑇𝑥1]𝛼𝑳(𝑥1) such that 

                                         0 < 𝑑𝓕(𝑥1, 𝑥2) < 𝑞𝑑𝓕(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1)).                         (3.3) 

Considering (3.2) and (3.3), we get 

                                                 0 < 𝑑𝓕(𝑥1, 𝑥2) ≤ 𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)).                         (3.4) 

Obviously, 𝑥1 ≠ 𝑥2, as 𝑑𝓕(𝑥1, 𝑥2) < 𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)). Since 𝜓 is strictly increasing, so 

𝜓(𝑑𝓕(𝑥1, 𝑥2)) < 𝜓 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))).  

Set 𝑞1 =
𝜓(𝑞𝜓(𝑑𝓕(𝑥0,𝑥1)))

𝜓(𝑑𝓕(𝑥1,𝑥2))
. Then, 𝑞1 > 1. Again, for 𝑥2 ∈ 𝑋, there exists 𝛼𝑳(𝑥2) ∈ 𝐿\{0𝐿} such 

that [𝑇𝑥2]𝛼𝑳(𝑥2) is nonempty. Now, let 𝑥2 ∉ [𝑇𝑥2]𝛼𝑳(𝑥2). Since 𝛽(𝑥0, 𝑥1) ≥ 1 and by (iv), 

𝛽(𝑥1, 𝑥2) ≥ 1. With (3.1) and Lemma 2.11, we have       

                                                            0 < 𝑑𝓕(𝑥2, [𝑇𝑥2]𝛼𝑳(𝑥2))  

                                                               ≤ 𝐻𝓕([𝑇𝑥1]𝛼𝑳(𝑥1), [𝑇𝑥2]𝛼𝑳(𝑥2))  

                                                               ≤ 𝛽(𝑥1, 𝑥2)𝐻𝓕([𝑇𝑥1]𝛼𝑳(𝑥1), [𝑇𝑥2]𝛼𝑳(𝑥2))  

                                                               ≤ 𝜓(𝑑𝓕(𝑥1, 𝑥2)) − 

𝜑 (𝑑(𝑥1, 𝑥2), 𝑑(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥2, [𝑇𝑥2]𝛼𝑳(𝑥2)), 𝑑(𝑥1, [𝑇𝑥2]𝛼𝑳(𝑥2)), 𝑑(𝑥2, [𝑇𝑥1]𝛼𝑳(𝑥1))) 

≤ 𝜓(𝑑𝓕(𝑥1, 𝑥2)) − 



Tanz. J. Sci. Vol. 51(1) 2025 

57 

𝜑 (𝑑(𝑥1, 𝑥2), 𝑑(𝑥1, [𝑇𝑥1]𝛼𝑳(𝑥1)), 𝑑(𝑥2, 𝑥1), 𝑑(𝑥1, 𝑥1), 𝑑(𝑥2, [𝑇𝑥1]𝛼𝑳(𝑥1)))           (3.5) 

From definition 2.3, we have (3.5) as 

≤ 𝜓(𝑑𝓕(𝑥1, 𝑥2)) 

By Lemma 2.12, for 𝑞1 > 1, there exists 𝑥3 ∈ [𝑇𝑥2]𝛼𝑳(𝑥2) such that 

                                         0 < 𝑑𝓕(𝑥2, 𝑥3) < 𝑞1𝑑𝓕(𝑥2, [𝑇𝑥2]𝛼𝑳(𝑥2)).                         (3.6) 

Consider (3.5) and (3.6), we get 

                         0 < 𝑑𝓕(𝑥2, 𝑥3) ≤ 𝑞1𝜓(𝑑𝓕(𝑥1, 𝑥2)) = 𝜓 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))).           (3.7) 

Obviously, 𝑥2 ≠ 𝑥3, as 𝑑𝓕(𝑥2, 𝑥3) < 𝜓 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))). Since 𝜓 is strictly increasing, so 

𝜓(𝑑𝓕(𝑥2, 𝑥3)) < 𝜓
2 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))).  

Set 𝑞2 =
𝜓2(𝑞𝜓(𝑑𝓕(𝑥0,𝑥1)))

𝜓(𝑑𝓕(𝑥2,𝑥3))
. Then, 𝑞2 > 1. Again, for 𝑥3 ∈ 𝑋, there exists 𝛼𝑳(𝑥3) ∈ 𝐿\{0𝐿} such 

that [𝑇𝑥3]𝛼𝑳(𝑥3) is nonempty. Now, let 𝑥3 ∉ [𝑇𝑥3]𝛼𝑳(𝑥3). Since 𝛽(𝑥1, 𝑥2) ≥ 1 and by (iv), 

𝛽(𝑥2, 𝑥3) ≥ 1. With (3.1) and Lemma 2.11, we have       

                                                            0 < 𝑑𝓕(𝑥3, [𝑇𝑥3]𝛼𝑳(𝑥3))  

                                                               ≤ 𝐻𝓕([𝑇𝑥2]𝛼𝑳(𝑥2), [𝑇𝑥3]𝛼𝑳(𝑥3))  

                                                               ≤ 𝛽(𝑥2, 𝑥3)𝐻𝓕([𝑇𝑥2]𝛼𝑳(𝑥2), [𝑇𝑥3]𝛼𝑳(𝑥3))  

                                                               ≤ 𝜓(𝑑𝓕(𝑥2, 𝑥3)) −

𝜑 (𝑑(𝑥2, 𝑥3), 𝑑(𝑥2, [𝑇𝑥2]𝛼𝑳(𝑥2)), 𝑑(𝑥3, [𝑇𝑥3]𝛼𝑳(𝑥3)), 𝑑(𝑥2, [𝑇𝑥3]𝛼𝑳(𝑥3)), 𝑑(𝑥3, [𝑇𝑥2]𝛼𝑳(𝑥2))) 

≤ 𝜓(𝑑𝓕(𝑥2, 𝑥3)) − 𝜑 (𝑑(𝑥2, 𝑥3), 𝑑(𝑥2, 𝑥3), 𝑑(𝑥3, [𝑇𝑥3]𝛼𝑳(𝑥3)), 𝑑(𝑥2, [𝑇𝑥3]𝛼𝑳(𝑥3)), 𝑑(𝑥3, 𝑥3)) 

Again, by Definition 2.3, we have 

                                                     ≤ 𝜓(𝑑𝓕(𝑥2, 𝑥3))                                                    (3.8) 

By Lemma 2.12, for 𝑞2 > 1, there exists 𝑥4 ∈ [𝑇𝑥3]𝛼𝑳(𝑥3) such that 

                                         0 < 𝑑𝓕(𝑥3, 𝑥4) < 𝑞2𝑑𝓕(𝑥3, [𝑇𝑥3]𝛼𝑳(𝑥3)).                         (3.9) 

Consider (3.8) and (3.9), we get 

                                                 0 < 𝑑𝓕(𝑥3, 𝑥4) ≤ 𝜓
2 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))).                 (3.10) 

Continuing this process having chosen 𝑥1, 𝑥2, 𝑥3, 𝑥4… , we establish a sequence {𝑥𝑛} in 𝑋 such 

that 𝑥2𝑛+1 ∈ [𝑇𝑥2𝑛]𝛼𝑳(𝑥2𝑛), 𝑥2𝑛+2 ∈ [𝑇𝑥2𝑛+1]𝛼𝑳(𝑥2𝑛+1) and 𝛽(𝑥𝑛−1, 𝑥𝑛) ≥ 1, then for all 𝑛, we 

have  

                                       𝑑𝓕(𝑥2𝑛+1, 𝑥2𝑛+2) ≤ 𝜓
2𝑛 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)))                     (3.11) 

and 

                                      𝑑𝓕(𝑥2𝑛+2, 𝑥2𝑛+3) ≤ 𝜓2𝑛+1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)))                   (3.12) 

From (3.11) and (3.12), we get 

                                               𝑑𝓕(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝜓
𝑛−1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))),                   (3.13) 

implies for 𝑚 > 𝑛, 

∑ 𝑑𝓕(𝑥𝑛, 𝑥𝑛+1)

𝑚−1

𝑖=𝑛

≤ ∑ 𝜓𝑛−1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))) .

𝑚−1

𝑖=𝑛

 

               

   (3.14) 

Let 𝜀 > 0 and 𝑛(𝜀) ∈ ℕ such that ∑ 𝜓𝑛−1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1))) < 𝜀𝑛≥𝑛(𝛿) . Let (𝑔, ℎ) ∈

𝓕 × [0, +∞) be such that (iii) of definition 2.8 is satisfied. Again, let 𝜀 > 0 be fixed. By 𝓕1, 

there exists 𝛿 > 0 such that 

                                                          0 < 𝑡 < 𝛿 ⇒ 𝑔(𝑡) < 𝑔(𝛿) − ℎ.                         (3.15) 
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Now, consider (3.13), (3.14) and 𝓕1, we have for all 𝑚 > 𝑛 ≥ 𝑁,        

𝑔(∑ 𝑑𝓕(𝑥𝑖 , 𝑥𝑖+1)
𝑚−1
𝑖=𝑛 ) ≤   

         𝑔 (∑ 𝜓𝑖−1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)))
𝑚−1
𝑖=𝑛 ) ≤ 𝑔 (∑ 𝜓𝑖−1 (𝑞𝜓(𝑑𝓕(𝑥0, 𝑥1)))𝑛≥𝑛(𝛿) ) < 𝑔(𝜀) − ℎ.   

                                                                                                                                       (3.16)     
By (iii) of Definition 2.8 and (3.16), we get 

                                                                  𝑑𝓕(𝑥𝑛 , 𝑥𝑚) > 0,                                           (3.17) 
implies 

𝑔(𝑑𝓕(𝑥𝑛 , 𝑥𝑚)) ≤ 𝑔 (∑ 𝑑𝓕(𝑥𝑖 , 𝑥𝑖+1)

𝑚−1

𝑖=𝑛

) + ℎ < 𝑔(𝜀). 

                                                                                                                                       (3.18) 
By 𝓕2, we have 𝑑𝓕(𝑥𝑛 , 𝑥𝑚) < 𝜀,𝑚 > 𝑛 ≥ 𝑁. It follows that the sequence {𝑥𝑛} is ℱ-Cauchy. 

Since (𝑋, 𝑑𝓕) is 𝓕-complete, there exists 𝑥∗ ∈ 𝑋 such that the sequence {𝑥𝑛} is ℱ-convergence 

to 𝑥∗, that is, 

                                                          lim
𝑛→∞

𝑑𝓕(𝑥𝑛 , 𝑥
∗) = 0.                                            (3.19) 

To show that 𝑥∗ ∈ [𝑇𝑥∗]𝛼𝑳(𝑥∗), we let 𝑑𝓕(𝑥
∗, [𝑇𝑥∗]𝛼𝑳(𝑥∗)) > 0. Since 𝑇 is 𝛽𝓕-admissible, 

𝛽(𝑥2𝑛−1, 𝑥
∗) ≥ 1 for all 𝑛 ∈ ℕ. 

By Definition of 𝑔 and (iii) of Definition 2.8, we have 

  𝑔 (𝑑𝓕(𝑥
∗, [𝑇𝑥∗]𝛼𝑳(𝑥∗))) ≤ 𝑔 (𝑑𝓕(𝑥

∗, 𝑥2𝑛) + 𝑑𝓕(𝑥2𝑛 , [𝑇𝑥
∗]𝛼𝑳(𝑥∗))) + ℎ 

                                         ≤ 𝑔 (𝑑𝓕(𝑥
∗, 𝑥2𝑛) + 𝐻𝓕([𝑇𝑥2𝑛−1]𝛼𝑳(𝑥2𝑛−1), [𝑇𝑥

∗]𝛼𝑳(𝑥∗))) + ℎ  

                               ≤ 𝑔 (𝑑𝓕(𝑥
∗, 𝑥2𝑛) + 𝛽(𝑥2𝑛−1, 𝑥

∗)𝐻𝓕([𝑇𝑥2𝑛−1]𝛼𝑳(𝑥2𝑛−1), [𝑇𝑥
∗]𝛼𝑳(𝑥∗))) + ℎ  

                               ≤ 𝑔 (𝑑𝓕(𝑥
∗, 𝑥2𝑛) + 𝜓(𝑑𝓕(𝑥

∗, 𝑥2𝑛−1)) −

𝜑 (𝑑(𝑥∗, 𝑥2𝑛), 𝑑(𝑥
∗, [𝑇𝑥∗]𝛼𝑳(𝑥∗)), 𝑑(𝑥2𝑛 , [𝑇𝑥2𝑛]𝛼𝑳(𝑥2𝑛)), 𝑑(𝑥

∗, [𝑇𝑥2𝑛]𝛼𝑳(𝑥2𝑛)), 𝑑(𝑥2𝑛, [𝑇𝑥
∗]𝛼𝑳(𝑥∗)))) +

ℎ   

By Definition 2.3, we have 

                               ≤ 𝑔(𝑑𝓕(𝑥
∗, 𝑥2𝑛) + 𝑑𝓕(𝑥

∗, 𝑥2𝑛−1)) + ℎ.                                          (3.20) 

On taking limit in (3.20), using (3.19) and 𝓕2, we have 

                  lim
𝑛→∞

𝑔 (𝑑𝓕(𝑥
∗, [𝑇𝑥∗]𝛼𝑳(𝑥∗))) = lim

𝑛→∞
𝑔(𝑑𝓕(𝑥

∗, 𝑥2𝑛) + 𝑑𝓕(𝑥
∗, 𝑥2𝑛−1)) + ℎ = −∞,    

a contradiction. Hence, 𝑑𝓕(𝑥
∗, [𝑇𝑥∗]𝛼𝑳(𝑥∗)) = 0, which implies 𝑥∗ ∈  [𝑇𝑥∗]𝛼𝑳(𝑥∗). 

Thus, 𝑇 has a fixed point.    

Example 3.2. Consider 𝑋 = [0,1], for all 𝑥, 𝑦 ∈ 𝑋, 𝓕-metric 𝑑𝓕: 𝑋 × 𝑋 → ℝ0
+ is define 

𝑑𝓕(𝑥, 𝑦) = |𝑥 − 𝑦|, and for 𝑡 > 0 and ℎ = 0, 𝑔(𝑡) = ln(𝑡). Then, (𝑋, 𝑑𝓕) is 𝓕-complete 𝓕-

metric space. Assume 𝐿 = {𝑤1, 𝑤2, 𝑤3, 𝑤4} with 𝑤1 ≼𝐿 𝑤2 ≼𝐿≼ 𝑤4 and 𝑤1 ≼𝐿 𝑤3 ≼𝐿≼ 𝑤4, 

where 𝑤2 and 𝑤3 are not comparable. We define 𝑇: 𝑋 → 𝓕𝑳(𝑋) as 

𝑇(𝑥)(𝑡) =

{
 
 
 

 
 
 𝑤4, 𝑖𝑓 0 < 𝑡 ≤

𝑥

6

𝑤2, 𝑖𝑓 
𝑥

6
< 𝑡 ≤

𝑥

3

𝑤3,
𝑤1,

𝑖𝑓 
𝑥

3
< 𝑡 ≤

𝑥

2

𝑖𝑓 
𝑥

2
< 𝑡 ≤ 1,

 

For all 𝑥 ∈ X, there exists 𝛼𝐿(𝑥) = 𝑤4, such that 

[𝑇𝑥]𝛼𝐿(𝑥) = [0,
𝑥

6
] 
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Hence, all the conditions of Theorem 3.1 are satisfied with 𝜓(𝑡) =
1

2
𝑡, 𝜑(𝑡) =

1

3
𝑡, for 𝑡 > 0. 

Thus, there exists 0 ∈ [0,1], that is, 0 ∈ [𝑇0]𝛼𝐿(0). 

Corollary 3.3 Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑇, 𝑓 be a 

pair of L-fuzzy mappings from (𝑋, 𝑑𝓕) into 𝓕𝐿(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete, 

(ii) for a point 𝑥0 ∈ 𝑋, there exists 𝛼𝑳(𝑥) ∈ 𝐿\{0𝐿} such that 𝑥1 ∈ [𝑇𝑥0]𝛼𝑳(𝑥0) or 𝑥1 ∈

[𝑓𝑥0]𝛼𝑳(𝑥0) with 𝛽(𝑥0, 𝑥1) ≥ 1, 

(iii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that   

                               𝛽(𝑥, 𝑦)𝐻𝓕([𝑇𝑥]𝛼𝑳(𝑥), [𝑓𝑦]𝛼𝑳(𝑦)) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑 (𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼𝑳(𝑥)), 𝑑(𝑦, [𝑓𝑦]𝛼𝑳(𝑦)), 𝑑(𝑥, [𝑓𝑦]𝛼𝑳(𝑦)), 𝑑(𝑦, [𝑇𝑥]𝛼𝑳(𝑥))),                   (3.21) 

(iv) (𝑇, 𝑓) is 𝛽𝓕-admissible, 

(v) for all 𝑛, {𝑥𝑛} is a sequence in 𝑋 such that 𝛽(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 

there exists 𝛽(𝑥𝑛 , 𝑥) ≥ 1 for all 𝑛.  

Then, 𝑇 and 𝑓 have a common fixed point 𝑥∗ ∈ [𝑇𝑥∗]𝛼𝑳(𝑥∗) ∩ [𝑓𝑥
∗]𝛼𝑳(𝑥∗).  

Proof The result follow from Theorem 3.1   

Corollary 3.4 Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑇 be fuzzy 

mapping from (𝑋, 𝑑𝓕) into 𝓕(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete,  

(ii) for a point 𝑥0 ∈ 𝑋, there exists 𝛼(𝑥) ∈ (0,1] such that 𝑥1 ∈ [𝑇𝑥0]𝛼(𝑥0) with 𝛽(𝑥0, 𝑥1) ≥ 1, 

(iii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that   

                               𝛽(𝑥, 𝑦)𝐻𝓕([𝑇𝑥]𝛼(𝑥), [𝑇𝑦]𝛼(𝑦)) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑 (𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼𝑳(𝑥)), 𝑑(𝑦, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑥, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑦, [𝑇𝑥]𝛼𝑳(𝑥))),                   (3.22) 

(iv) 𝑇 is 𝛽𝓕-admissible, 

(v) for all 𝑛, {𝑥𝑛} is a sequence in 𝑋 such that 𝛽(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 

there exists 𝛽(𝑥𝑛 , 𝑥) ≥ 1 for all 𝑛.  

Then, 𝑇 has a fixed point 𝑥∗ ∈ [𝑇𝑥∗]𝛼(𝑥∗).  

Proof Let L-fuzzy mappings 𝐴: 𝑋 → 𝓕𝑳(𝑋) be defined as 

𝐴𝑥 = 𝑋𝐿𝑇𝑥 . 

Then, for all 𝛼𝑳(𝑥) ∈ 𝐿\{0𝐿}, we get 

                                                                      [𝐴𝑥]𝛼𝑳(𝑥) = 𝑇𝑥. 

Hence, the remaining proof follows from Theorem 3.1. 

Corollary 3.5 Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑇, 𝑓 be a 

pair of fuzzy mappings from (𝑋, 𝑑𝓕) into 𝓕(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete, 

(ii) for a point 𝑥0 ∈ 𝑋, there exists 𝛼(𝑥) ∈ (0,1] such that 𝑥1 ∈ [𝑇𝑥0]𝛼(𝑥0) or 𝑥1 ∈ [𝑓𝑥0]𝛼(𝑥0) 

with 𝛽(𝑥0, 𝑥1) ≥ 1, 

(iii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that   

                               𝛽(𝑥, 𝑦)𝐻𝓕([𝑇𝑥]𝛼(𝑥), [𝑓𝑦]𝛼(𝑦)) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑 (𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼𝑳(𝑥)), 𝑑(𝑦, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑥, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑦, [𝑇𝑥]𝛼𝑳(𝑥))),                   (3.23) 

(iv) (𝑇, 𝑓) is 𝛽𝓕-admissible, 

(v) for all 𝑛, {𝑥𝑛} is a sequence in 𝑋 such that 𝛽(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 

there exists 𝛽(𝑥𝑛 , 𝑥) ≥ 1 for all 𝑛.  

Then, 𝑇 and 𝑓 have a common fixed point 𝑥∗ ∈ [𝑇𝑥∗]𝛼(𝑥∗) ∩ [𝑓𝑥
∗]𝛼(𝑥∗).  

Proof Let L-fuzzy mappings 𝐴, 𝐵: 𝑋 → 𝓕𝑳(𝑋) be defined as 

𝐴𝑥 = 𝑋𝐿𝑇𝑥 , 

and 
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𝐵𝑥 = 𝑋𝐿𝑓𝑥 . 

Then, for all 𝛼𝑳(𝑥) ∈ 𝐿\{0𝐿}, we get 

                                                 [𝐴𝑥]𝛼𝑳(𝑥) = 𝑇𝑥 and [𝐵𝑥]𝛼𝑳(𝑥) = 𝑓𝑥. 

Hence, the remaining proof follows from Theorem 3.3. 

We now consider the fixed points results for multivalued mappings. 

Theorem 3.6 Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑅 be a fuzzy 

mapping from (𝑋, 𝑑𝓕) into 𝐶𝐵(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete, 

(ii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that   

                                                             𝛽(𝑥, 𝑦)𝐻𝓕(𝑅𝑥, 𝑅𝑦) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑(𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑅𝑥), 𝑑(𝑦, 𝑅𝑦), 𝑑(𝑥, 𝑅𝑦), 𝑑(𝑦, 𝑅𝑥)),                                                    (3.24) 

Then, 𝑅 has a fixed point 𝑥∗ ∈ 𝑅𝑥∗.  
Proof Define 𝐿-fuzzy mappings 𝑇: 𝑋 → 𝓕𝐿(𝑋), for some 𝛼𝑳 ∈ 𝐿\{0𝐿} by 

𝑇(𝑥)(𝑡) = {
𝛼𝑳, 𝑖𝑓 𝑡 ∈ 𝑅𝑥,
0, 𝑖𝑓 𝑡 ∉ 𝑅𝑥

 

and  

𝑇(𝑦)(𝑡) = {
𝛼𝑳, 𝑖𝑓 𝑡 ∈ 𝑅𝑦,
0, 𝑖𝑓 𝑡 ∉ 𝑅𝑦.

 

Then, 
[𝑇𝑥]𝛼𝑳(𝑥) = 𝑅𝑥 

and 
[𝑇𝑦]𝛼𝑳(𝑦) = 𝑅𝑦. 

Implies for all 𝑥, 𝑦 ∈ X, 

𝐻𝓕([𝑇𝑥]𝛼𝑳(𝑥), [𝑇𝑦]𝛼𝑳(𝑦)) = 𝐻𝓕(𝑅𝑥, 𝑅𝑦) 

The remaining proof follows from Theorem 3.3. Thus 𝑥∗ ∈ 𝑋, 

                                                                 𝑥∗ ∈ [𝑇𝑥∗]𝛼𝑳(𝑥∗) = 𝑅𝑥
∗. 

Theorem 3.7 Let (𝑋, 𝑑𝓕) be 𝓕-metric space and 𝛽: (𝑋, 𝑑𝓕) × (𝑋, 𝑑𝓕) → [0,∞). Let 𝑅1, 𝑅2 be 

fuzzy mappings from (𝑋, 𝑑𝓕) into 𝐶𝐵(𝑋) satisfying the following: 

(i) (𝑋, 𝑑𝓕) is 𝓕-complete, 

(ii) for a point 𝑥0 ∈ 𝑋, there exists 𝑥1 ∈ 𝑅1𝑥0 or 𝑥1 ∈ 𝑅2𝑥0 with 𝛽(𝑥0, 𝑥1) ≥ 1, 

(iii) for all 𝑥, 𝑦 ∈ X, there exist 𝜓 ∈ Ψ and 𝜑 ∈ Φ such that   

                                                        𝛽(𝑥, 𝑦)𝐻𝓕(𝑅1𝑥, 𝑅2𝑦) ≤ 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑(𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑅𝑥), 𝑑(𝑦, 𝑅𝑦), 𝑑(𝑥, 𝑅𝑦), 𝑑(𝑦, 𝑅𝑥)),                                                       (3.25) 

(iv) (𝑅1, 𝑅2) is 𝛽𝓕-admissible, 

(v) for all 𝑛, {𝑥𝑛} is a sequence in 𝑋 such that 𝛽(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 and 𝑥𝑛 → 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 

there exists 𝛽(𝑥𝑛 , 𝑥) ≥ 1 for all 𝑛.  

Then, 𝑅1 and 𝑅2 have a common fixed point 𝑥∗ ∈ 𝑅1𝑥
∗ ∩ 𝑅2𝑥

∗.  

Proof Define 𝐿-fuzzy mappings 𝑇, 𝑓: 𝑋 → 𝓕𝐿(𝑋), for some 𝛼𝑳 ∈ 𝐿\{0𝐿} by 

𝑇(𝑥)(𝑡) = {
𝛼𝑳, 𝑖𝑓 𝑡 ∈ 𝑅1𝑥,
0, 𝑖𝑓 𝑡 ∉ 𝑅1𝑥

 

and  

𝑓(𝑦)(𝑡) = {
𝛼𝑳, 𝑖𝑓 𝑡 ∈ 𝑅2𝑦,
0, 𝑖𝑓 𝑡 ∉ 𝑅2𝑦.

 

Then, 
[𝑇𝑥]𝛼𝑳(𝑥) = 𝑅1𝑥 

and 
[𝑓𝑥]𝛼𝑳(𝑥) = 𝑅2𝑦. 

Implies for all 𝑥, 𝑦 ∈ X, 

𝐻𝓕([𝑇𝑥]𝛼𝑳(𝑥), [𝑓𝑦]𝛼𝑳(𝑦)) = 𝐻𝓕(𝑅1𝑥, 𝑅2𝑦) 



Tanz. J. Sci. Vol. 51(1) 2025 

61 

The remaining proof follows from Theorem 3.3. Thus 𝑥∗ ∈ 𝑋, 

                                            𝑥∗ ∈ [𝑇𝑥∗]𝛼𝑳(𝑥∗) ∩ [𝑓𝑥
∗]𝛼𝑳(𝑥∗) = 𝑅1𝑥

∗ ∩ 𝑅2𝑥
∗. 

Application 

Here, we demonstrate applicability of the results developed in the previous sections to 

investigate the solution of fuzzy initial value problem by using generalized Hukuhara 

differentiability. For more details on this, we refer to (Bede and Gal 2005, Deepmala et al. 2017, 

Gairola et al. 2024, Mishra et al. 2022, Seikkala 1987, Villamizar-Roa et al. 2015).  

As a starting point, we introduce the symbols that will be use in this section. 

Let ℋ𝑐
𝑛  denote the space of nonempty, compact and convex subsets of the 𝑛-dimensional 

Euclidean space ℝ𝑛. If 𝐴, 𝐵 ∈ ℋ𝑐
𝑛  and ‖∙‖ denotes Euclidean norm in ℝ𝑛, then, the Hausdorff 

metric 𝑑 on ℋ𝑐
𝑛  is define as 

                                𝑑(𝐴, 𝐵) = 𝑚𝑎𝑥 {sup
𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴
‖𝑎 − 𝑏‖}. 

and, we introduce the following definitions. 

Definition 4.1 Let 𝑢:ℝ𝑛 → [0,1] be a fuzzy mapping. 

(a) 𝑢 is said to be normal, if there exists 𝑥0 ∈ ℝ
𝑛 such that 𝑢(𝑥0) = 1. 

(b) 𝑢 is said to be fuzzy convex, if for all 𝑥, 𝑦 ∈ ℝ𝑛 and 0 ≤ 𝜇 ≤ 1, we have  

                           𝑢(𝜇𝑥 + (1 − 𝜇)𝑦) ≥ 𝑚𝑖𝑛{𝑢(𝑥), 𝑢(𝑦)}.  
(c) 𝑢 is said to be upper semicontinuous, if for all 𝛼 ∈ [0,1], [𝑢]𝛼is closed. 

(d) [𝑢]0 is compact. 

Definition 4.2 (Villamizar-Roa et al. 2015) Suppose 𝑢, 𝑣,𝑤 ∈ ℱ𝑛. An element 𝑤 is referred to 

as Hukuhara difference of 𝑢 and 𝑣, if it satisfies the equation 𝑢 = 𝑣 + 𝑤. Now, 𝑢 ⊝𝐻 𝑣 denotes 

the Hukuhara difference points of 𝑢 and 𝑣. Clearly, 𝑢 ⊝𝐻 𝑢 = {0}, and if 𝑢 ⊝𝐻 𝑣 exists, then 

this unique.  

Definition 4.3 (Villamizar-Roa et al. 2015) Assume 𝑔: (𝑎, 𝑏) → ℱ𝑛 and 𝑡0 ∈ (𝑎, 𝑏). 𝑔 is referred 

to be strongly generalized differentiable or GH-differentiable at 𝑡0, if there exists 𝑔𝐺
′ (𝑡0) ∈ ℱ

𝑛  

such that  

𝑔(𝑡0 + ℎ)⊝𝐻 𝑔(𝑡0), 𝑔(𝑡0) ⊝𝐻 𝑔(𝑡0 + ℎ) 
and       

lim
ℎ→0+

𝑔(𝑡0 + ℎ) ⊝𝐻 𝑔(𝑡0)

ℎ
= lim

ℎ→0+

𝑔(𝑡0) ⊝𝐻 𝑔(𝑡0 + ℎ)

ℎ
= 𝑔𝐺

′ (𝑡0). 

Example 4.4 (Villamizar-Roa et al. 2015) Consider the fuzzy mapping 𝑔:ℝ → ℱ′ defined by 

𝑔(𝑡) = 𝐶. 𝑡, where 𝐶 is a fuzzy number defined with its 𝛼-levels by [𝐶]𝛼 = [1 + 𝛼, 2(3 − 𝛼)𝑡]. 
Then, 

[𝑔(𝑡)]𝛼 = {
[1 + 𝛼, 2(3 − 𝛼)𝑡], 𝑡 ≥ 0,

2(3 − 𝛼)𝑡, [1 + 𝛼 ], 𝑡 < 0.
 

Obviously, the functions 𝑔𝑙
𝛼 and 𝑔𝑟

𝛼 are not differentiable at 𝑡 = 0. But 𝑔 is GH-differentiable 

on ℝ and 𝑔𝐺
′ (𝑡) = 𝐶. That is, 𝑔 is GH-differentiable at 𝑡 = 0.  

We now consider the following fuzzy initial value problem (FIVP) as follows: 

                                                 {
𝑥′(𝑡) = 𝑔(𝑡, 𝑥(𝑡)), 𝑡 ∈ 𝐽 = [0, 𝑇],

𝑥(0), 𝑥0,
                                (4.1) 

where 𝑥′ derivative is considered in the sense of GH-differentiable, where at the end points of 𝐽 
only one-sided derivative is considered, and the fuzzy function 𝑔: 𝐽 × ℱ′ → ℱ′ is continuous. 

The initial data 𝑥0 in ℱ′. We denote 𝐶1(𝐽, ℱ′) the collections of all continuous fuzzy functions 

𝑔: 𝐽 → ℱ′ with continuous derivative. 

Lemma 4.5 (Lateef 2024) A fuzzy function 𝑥 ∈ 𝐶1(𝐽, ℱ′) is a solution of (4.1) if and only if it 

verifies the integral equation 

𝑥(𝑡) = 𝑥0⊝𝐻 (−1)∫𝑔(𝑠, 𝑥(𝑠))𝑑𝑠,

𝑡

0

    𝑡 ∈ 𝐽 = [0, 𝑇]. 
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                                                                                                                                          (4.2) 
Theorem 4.6 Suppose 𝑔: 𝐽 × ℱ′ → ℱ′ is continuous such that 

(i) 𝑔(𝑡, 𝑥) < 𝑔(𝑡, 𝑦), for 𝑥 < 𝑦, 

(ii) there exist some constants 𝜏 > 0 large enough such that 𝜆 ∈ (0,
1

2(𝜌−𝛿)
) and the metric for 

𝑥, 𝑦 ∈ ℱ′, with 𝑥 < 𝑦 and 𝑡 ∈ 𝐽 such that 

‖𝑔(𝑡, 𝑥(𝑡)) − 𝑔(𝑡, 𝑦(𝑡))‖
ℝ
≤ 𝜏max

𝑡∈𝐽
{𝑑∞(𝑥, 𝑦)𝑒

−𝜏(𝑡−𝛿)} 

Then, (4.1) has a solution in 𝐶1(𝐽, ℱ′).  
Proof Let 𝐶1(𝐽, ℱ′) be endowed with  

𝑑𝜏(𝑥, 𝑦) = sup
𝑡∈𝐽

max
𝑡∈𝐽

{𝑑∞(𝑥(𝑡), 𝑦(𝑡))𝑒
−𝜏(𝑡−𝛿)}, 

 for 𝑥, 𝑦 ∈ 𝐶1(𝐽, ℱ′) and 𝜏 > 0. Then, with 𝑔(𝑥) = ln(𝑥), 𝑥 > 0 and ℎ = 0, (𝐶1(𝐽, ℱ′), 𝑑𝜏) is ℱ 

complete metric space. 

Let 𝐴, 𝐵: 𝐶1(𝐽, ℱ′) → (0,1]. For 𝑥 ∈ 𝐶1(𝐽, ℱ′), 

𝐿𝑥(𝑡) = 𝑥0⊝𝐻 (−1)∫𝑔(𝑠, 𝑥(𝑠))𝑑𝑠.

𝑡

0

 

Let 𝑥 < 𝑦. Then, it follows from the assumption of definition 4.1 (a) that 

𝐿𝑥(𝑡) = 𝑥0⊝𝐻 (−1)∫𝑔(𝑠, 𝑥(𝑠))𝑑𝑠 < 𝑥0⊝𝐻 (−1)∫𝑔(𝑠, 𝑦(𝑠))𝑑𝑠 = 𝑅𝑦(𝑡) 

𝑡

𝛿

 

𝑡

𝛿

 

If 𝐿𝑥(𝑡) ≠ 𝑅𝑦(𝑡) and 𝑇, 𝑓: 𝐶1(𝐽, ℱ′) → ℱ𝐶1(𝐽,ℱ′) as 

𝛽𝑇𝑥(𝑟) = {
𝐴(𝑥), 𝑖𝑓 𝑟(𝑡) = 𝐿𝑥(𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

𝛽𝑓𝑥(𝑟) = {
𝐵(𝑦), 𝑖𝑓 𝑟(𝑡) = 𝐿𝑦(𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Again, if 𝛼𝑇(𝑥) = 𝐴(𝑥) and 𝛼𝑓(𝑦) = 𝐵(𝑦), we get 

[𝑇𝑥]𝛼𝑇(𝑥) = {𝑟 ∈ 𝑋: (𝑇𝑥)(𝑡) ≥ 𝐴(𝑥)} = {𝐿𝑥(𝑡)}, 

Similarly,  

                                                   [𝑓𝑦]𝛼𝑓(𝑦) = {𝑅𝑦(𝑡)} 

𝐻 ([𝑇𝑥]𝛼𝑇(𝑥), [𝑓𝑦]𝛼𝑓(𝑦)) = 𝑚𝑎𝑥 {

𝑥 ∈ [𝑇𝑥]𝛼𝑇(𝑥), sup
𝑦∈[𝑓𝑦]𝛼𝑇(𝑦)

𝑖𝑛𝑓‖𝑥 − 𝑦‖ℝ

𝑦 ∈ [𝑓𝑦]𝛼𝑇(𝑦), sup
𝑥∈[𝑇𝑥]𝛼𝑓(𝑥)

𝑖𝑛𝑓‖𝑥 − 𝑦‖ℝ
} 

                                          ≤ 𝑚𝑎𝑥 {sup
𝑡∈𝐽
‖𝐿𝑥(𝑡) − 𝑅𝑦(𝑡)‖ℝ}  

                                          = sup
𝑡∈𝐽

‖𝐿𝑥(𝑡) − 𝑅𝑦(𝑡)‖ℝ  

= sup
𝑡∈𝐽

‖∫𝑔(𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

𝛿

−∫𝑔(𝑠, 𝑦(𝑠))𝑑𝑠

𝑡

0

‖

ℝ

 

≤ sup
𝑡∈𝐽

{∫‖𝑔(𝑠, 𝑥(𝑠)) − 𝑔(𝑠, 𝑦(𝑠))‖𝑑𝑠

𝑡

𝛿

} 

≤ sup
𝑡∈𝐽

{∫𝑑𝑢𝜆 𝑚𝑎𝑥{𝐷∞(𝑥, 𝑦)𝑒
−𝜏(𝑡−𝛿)}𝑑𝑠

𝑡

𝛿

} 

≤ 𝜆sup
𝑡∈𝐽

{(𝑡 − 𝛿)𝑚𝑎𝑥{𝐷∞(𝑥, 𝑦)𝑒
−𝜏(𝑡−𝛿)}} 
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                                            ≤ 𝜆(𝑡 − 𝛿)𝑑𝓕(𝑥, 𝑦)  

                                            ≤
1

2
𝑑𝓕(𝑥, 𝑦)  

                                            = 𝜓(𝑑𝓕(𝑥, 𝑦)) −

𝜑 (𝑑(𝑥, 𝑦), 𝑑(𝑥, [𝑇𝑥]𝛼𝑳(𝑥)), 𝑑(𝑦, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑥, [𝑇𝑦]𝛼𝑳(𝑦)), 𝑑(𝑦, [𝑇𝑥]𝛼𝑳(𝑥))).  

Hence, all the conditions of Corollary 3.5 and Corollary 3.6 are satisfied with 𝜓(𝑡) =
1

2
𝑡, for 

𝑡 > 0. Thus, 𝑥∗ is a solution of (4.1). 
 

Conclusion 

The main findings of this study demonstrate 

applicability of  𝓕-metric space in establishing 

fixed point results for 𝛽-𝜓- 𝜑 contractive 

mappings in a complete 𝓕-metric spaces for L-

fuzzy mappings. This study provides 

significant advancements in the understanding 

of 𝓕-metric space, through illustrative 

examples, we showcased the practical 

applicability of the results and explored as an 

application, the solution for fuzzy initial-value 

problems. Future work could also explore the 

extension of this results to other types of fuzzy 

mappings. 
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