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Abstract 

Carbon dioxide emissions are a significant driver of climate change, impacting ecosystems, 

human health, and economies. In Tanzania, increasing carbon dioxide emissions from fossil 

fuel use, deforestation, and industrial growth contribute to environmental challenges such as air 

pollution, agricultural disruption, and changing weather patterns. This study models Tanzania’s 

carbon dioxide emissions using the Generalized Log-Logistic distribution and compares it to 

other models, including Burr XII, log-logistic, Weibull, and log-normal distributions. The 

results show that the Generalized Log-Logistic distribution provides the best fit to the data, 

outperforming other models in goodness-of-fit, log-likelihood values, and information criteria. 

Three estimation methods such as maximum likelihood, least squares, and weighted least 

squares were applied, with maximum likelihood yielding the lowest mean squared error, 

making it the most effective for parameter estimation. The likelihood ratio test further 

confirmed that the Generalized Log-Logistic model offers a superior fit compared to its sub-

models, demonstrating its robustness in representing carbon dioxide emissions data. These 

findings establish the Generalized Log-Logistic model as a valuable tool for monitoring carbon 

dioxide emission patterns in Tanzania, essential for managing rising emissions. This study 

underscores the importance of reliable probability models in addressing environmental 

challenges and informing strategies to mitigate carbon dioxide emissions. 

Keywords: Generalized Log-Logistic; Carbon dioxide Emissions; Sub-models; Parameter 

Estimation. 

 

Introduction  

The choice of appropriate probability 

models is crucial in environmental pollution 

studies, as they provide a robust framework 

for understanding and managing variability in 

pollutant concentrations. These models 

enable accurate parameter estimation, 

facilitate health risk assessment, and support 

adaptive environmental management 

strategies. Selecting suitable probability 

distributions allows researchers to effectively 

model contaminant behavior, predict their 

spread, and inform regulatory decisions to 

mitigate environmental and public health 

impacts. However, pollution data often 

exhibit right-skewed distributions, making 

normal distribution models unsuitable. A 

common approach to address this is to 

transform the data, often using a logarithmic 

conversion. Nevertheless, environmental 

studies prioritize estimating statistics on the 

original measurement scale rather than 

relying on transformed data (Singh et al. 

2001). 

Modeling environmental pollution is 

complicated by the challenge of handling 

observations that fall below the detection 

limit (DL), often reported as non-detect (ND) 

or less than the detection limit (LDL). These 

observations lack precise numerical values 

and traditional methods become problematic 

with left-censored data (Aryal 2013). 

Analysts frequently exclude observations 

below the DL or substitute them with values 

like zero or DL/2, assuming uniform 

distribution between zero and DL. However, 
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both methods can introduce bias, which 

intensifies as censoring increases (Newman et 

al. 1989). This study recommends exploring 

more robust methods for handling censored 

data in environmental pollution research. 

The log-normal distribution has been 

widely used to model pollution 

concentrations, but alternative distributions 

may provide a better fit. Larsen (1974) 

introduced a third parameter to the log-

normal distribution, which helps transform a 

log-probability plot into a nearly straight line. 

This additional parameter increases the 

model's flexibility and was further developed 

into the censored three-parameter log-normal 

model by Mage and Ott (1978). However, 

they cautioned against automatically using 

any specific model without validating its 

suitability, as this could lead to misleading 

results. 

Studies have shown that alternative 

distributions, such as the gamma distribution, 

can outperform the log-normal in some cases. 

For example, Berger et al. (1982) found that 

the gamma distribution provided a better fit 

for atmospheric sulfur dioxide (SO₂) 

concentrations in Belgium. Jakeman and 

Taylor (1985) also demonstrated that gamma 

models were more effective than log-normal 

models for acid-gas concentrations in 

industrial airsheds. These findings suggest 

that exploring various probability models 

may better capture the unique characteristics 

of environmental data. 

Adeyinka (2019) argued that no single 

probability model, including the log-normal 

distribution, is universally superior. The 

generalized log-logistic (GLL) distribution 

emerges as a promising option for 

environmental pollution data analysis (Lima 

and Cordeiro 2017). As an extension of the 

log-logistic distribution, the GLL shares 

similarities with the log-normal, but its 

enhanced mathematical simplicity makes it 

particularly suitable for censored data (Singh 

et al. 1994). This flexibility makes the GLL 

distribution well-suited for handling 

environmental data. 

The selection of an appropriate model often 

begins with a general model that can 

incorporate specific cases (Aldahlan 2020). 

Although less common in environmental 

studies, the skewness and heavy tails of GLL 

distributions make them suitable for a variety 

of datasets (Malik and Ahmad 2020). The 

GLL family includes well-known sub-models 

like the log-logistic, Weibull, and Burr XII 

distributions, which are commonly used for 

pollutant concentration data. Given this 

flexibility, the GLL distribution is expected to 

be an effective model for environmental data 

analysis. This study proposes the use of the 

GLL family to analyze carbon dioxide 

emissions data in Tanzania, as it can 

accommodate deviations from log-normality, 

such as skewness and kurtosis. 

This research stands apart by applying the 

generalized log-logistic (GLL) distribution as 

a general model for environmental pollution 

data, specifically focusing on CO₂ emissions 

in Tanzania. Unlike previous studies, it 

compares a wide range of distributions, 

including the log-normal and various GLL 

sub-models such as log-logistic, Weibull, 

exponential, and Burr XII distributions. The 

study emphasizes the simplicity of the GLL 

distribution's formulas and explores its 

mathematical and statistical properties. The 

versatility of the GLL model and its 

compatibility with modern computational 

tools provide new insights into Tanzania’s 

environmental challenges, illustrating the 

applicability of advanced probability models 

in this setting. To the best of current 

knowledge, this is the first study to apply 

GLL distributions to model CO₂ emissions 

data specifically in Tanzania. 

Overview of Carbon Dioxide Emission in 

Tanzania 

According to Global Carbon Budget data, 

Tanzania's CO₂ emissions reached 

approximately 15.57 megatons in 2022, 

making it the second-largest emitter in East 

Africa, following Kenya. This rise highlights 

the country's growing contribution to global 

warming, driven by fossil fuel consumption 

(coal, oil, and natural gas), deforestation 

linked to agricultural expansion and 

infrastructure development, and agricultural 

practices such as crop burning and livestock 

farming (Hafner et al. 2019). Among these 

sources, oil has been the largest contributor, 
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with emissions steadily increasing since the 

1960s (see Figure 1). Gas emissions have 

risen significantly since the early 2000s, 

while coal and cement production have also 

contributed, with emissions sharply 

increasing since the 1990s. Although flaring 

contributes less, its emissions have also 

gradually risen. 

 

 

 
Figure 1: Carbon dioxide Emissions by Fuel/Industry in Tanzania 

Source: Global Carbon Budget (2023) data  

 

The trends in CO₂ emissions for Tanzania 

show a steady increase, with a notable peak 

in 2022, as depicted in Figure 2. A blue trend 

line illustrates the rise in emissions over time, 

while a red horizontal line indicates the 

average CO₂ emission level of approximately 

4.35 megatons. A green vertical line marks 

2022 as the year with the highest emissions. 

This data underscores the urgent need for 

Tanzania to adopt more effective strategies 

for managing CO₂ emissions, including 

transitioning to renewable energy sources, 

conserving forests, and promoting sustainable 

agricultural practices. Addressing these issues 

is critical for mitigating environmental 

impacts, such as changes in temperature, sea 

levels, and rainfall patterns, which could 

disrupt ecosystems, water supplies, and 

agriculture, ultimately affecting 

socioeconomic development and food 

security in the country. 

 

0

0.5

1

1.5

2

2.5

3

1
9

6
1

1
9

6
4

1
9

6
7

1
9

7
0

1
9

7
3

1
9

7
6

1
9

7
9

1
9

8
2

1
9

8
5

1
9

8
8

1
9

9
1

1
9

9
4

1
9

9
7

2
0

0
0

2
0

0
3

2
0

0
6

2
0

0
9

2
0

1
2

2
0

1
5

2
0

1
8

2
0

2
1

M
t 

C
\Y

ae
r

Year

Coal Oil Gas Cement Flaring



Twahil Shakiru - Probability Modeling of Carbon Dioxide Emissions in Tanzania 

410 

 
Figure 2: Carbon Dioxide Emission Trend in Tanzania 

Source: Computed by Author based on Global Carbon Budget (2023) data 

 

Despite the upward trend in Tanzania’s CO₂ 

emissions, its global contribution remains 

low at approximately 0.02% (see Figure 3), 

underscoring its minimal role in global 

climate change compared to major emitters 

like the United States (24.08%), the European 

Union (16.69%), and China (14.7%), with the 

United Kingdom and India contributing 

4.45% and 3.37%, respectively, and Africa as 

a whole accounting for 2.288%. However, 

Tanzania’s emissions reached to 15.57 

megatons in 2022 (Figure 2), position it as 

the second-largest emitter in East Africa, 

emphasizing its regional significance. This 

trend, combined with Tanzania’s vulnerability 

to climate impacts like flooding and droughts, 

justifies the importance of studying and 

mitigating its emissions to support regional 

climate resilience, sustainable development, 

and local environmental health, even if its 

global impact is limited. 

 

 
Figure 3: Comparison of Global CO2 Emission Contributions in 2022 
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Source: Computed by Author based on Global Carbon Budget (2023) data 

 

Materials and Methods 

Materials  

This study used a dataset on CO₂ emissions 

in Tanzania from the Global Carbon Budget 

(2023), covering the period from 1961 to 

2022. The dataset includes CO₂ emission 

values in megaton, offering a detailed view of 

the trends and changes in emissions over six 

decades. 

Methods 

Log-normal Distribution 

A random variable 𝑋 > 0  follows a two-

parameter log-normal (LN) distribution if its 

logarithm,  𝑌 = (𝐼𝑛𝑋), is normal distribution 

with mean ( 𝜇) and variance ( 𝜎2). In other 

words, if (𝑋) has a log-normal distribution, 

then the logarithmic transformation of 𝑋 (i.e., 

𝑌 = (𝐼𝑛𝑋)) will be normally distributed with 

the parameters 𝜇 and 𝜎2. The probability 

density function (PDF) for (𝑋) depends   on 

the parameters 𝜇 (the mean of the log-

transformed variable),  𝜎 (the standard 

deviation of the log-transformed variable), 

and  𝑥 (the value of the random variable (𝑋), 

and is given by:  

𝑓(𝑥, 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 (

−(𝑙𝑛𝑥−𝜇)2

2𝜎2 ) , 𝑥 < 0. 

(1) 

The Generalized log-logistic Distribution 

The Generalized Log-Logistic (GLL) 

distribution is a continuous probability 

distribution commonly used to model random 

variables. The Generalized Log-Logistic 

(GLL) distribution is a continuous probability 

distribution often used to model random 

variables. It extends the log-logistic (LL) 

distribution and is defined by three key 

parameters: shape (α), scale (β), and location 

(γ). The GLL distribution’s flexibility in 

modeling a wide range of data patterns has 

made it popular across various disciplines, 

including environmental science, reliability 

analysis, and finance. Singh (1989) first 

introduced the GLL distribution as an 

extension of the LL distribution to model data 

related to lung cancer and other types of 

cancer. He demonstrated its adaptability by 

applying it to lung cancer survival data. 

Building on this work, Singh et al. (1994) 

highlighted the GLL distribution's utility in 

modeling breast cancer survival data, further 

proving its versatility in handling complex 

datasets in medical research.  

 

 

If 𝑋 is a random variable following the Generalized Log-Logistic (GLL) distribution, its 

probability density function (PDF) can be expressed using Equation (3), which includes three 

parameters: shape, scale, and location. Each of these parameters plays a role in shaping the 

distribution's characteristics and behavior. The PDF is initially represented as: 

𝑓(𝑥, 𝛼, 𝛽, 𝜆) = 𝑘(𝑥, 𝛼, 𝛽, 𝜆)𝑒𝑥𝑝{−∫ 𝑘(𝑥)𝑑𝑥
𝑥

0
}.  (2) 

where, 𝑓(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝛼𝑥𝛼

1+(𝜆𝑥)𝛼
 . Simplifying Equation (2) yields (3): 

𝑓(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝜆𝑥)𝛼]
(
𝛽𝛼

𝜆𝛼)+1
,           𝑥 ≥ 0, 𝛼, 𝛽, 𝜆 > 0. (3) 

Here, the function 𝑘 is incorporated into the final probability density function through the 

integral ∫ 𝑘(𝑡)𝑑𝑡
𝑥

0
=

𝛽𝛼

𝜆𝛼 𝑙𝑛(1 + (𝜆𝑥)𝛼), which produces the exponential term [1 + (𝜆𝑥)𝛼]−
𝛽𝛼

𝜆𝛼 , 

resulting in the standard GLL probability density function form expressed in Equation (3). The 

parameters α, β and λ are defined as follows: 

α indicates the shape parameter that affects the GLL distribution curve's shape. 

β denotes the scale parameter, which establishes the distribution's scale or spread. 

λ denotes the location parameter and permits a shift or displacement along the x-axis. 

 

The curves of the probability density 

function for the generalized log-logistic 

distribution, based on various parameter 

combinations, are illustrated in Figure 4. This 
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figure illustrates how the distribution tends to 

be more dispersed and has wider tails and a 

flatter overall shape when the scale parameter 

is small. On the other hand, a large-scale 

parameter causes the distribution to become 

more peaked and concentrated, with smaller 

tails. Additionally, a location parameter that 

is extremely small or negative compresses the 

distribution around smaller values, 

highlighting the distribution's lighter side. 

 

 

 
Figure 4: Probability Density Function Curves of the Generalized Log-Logistic (GLL) 

Distribution Under Different Parameter Configurations. 

 

The cumulative distribution function of the Generalized Log-Logistic (GLL) distribution is 

described by: 

𝐹(𝑥, 𝛼, 𝛽, 𝜆) =
[1+(𝜆𝑥)𝛼]

(
𝛽𝛼

𝜆𝛼)
−1

[1+(𝜆𝑥)𝛼]
(
𝛽
𝜆
)
𝛼 ,    𝑥 ≥ 0, 𝛼, 𝛽, 𝜆 > 0.  (4) 

The reliability function of the Generalized Log-Logistic (GLL) distribution, which denotes 

the probability that a variable or component will continue to function without failure up to a 

specified time, is given by Equation (6). This function provides insight into the likelihood of 

survival or continued operation over time, capturing the distribution's behavior in terms of 

reliability and longevity.  

𝑅(𝑥, 𝛼, 𝛽, 𝜆) =
𝑓(𝑥,𝛼,𝛽,𝜆)

𝑘(𝑥,𝛼,𝛽,𝜆)
  (5) 

Upon simplification Equation (5) gives 

𝑅(𝑥, 𝛼, 𝛽, 𝜆) = [1 + (𝜆𝑥)𝛼]−(
𝛽

𝜆
)
𝛼

, 𝑥 ≥ 0, 𝛼, 𝛽, 𝜆 > 0.       (6) 

 

Figure 5 illustrates how the reliability 

characteristics of the Generalized Log-

Logistic (GLL) distribution are affected as 

the parameter λ changes from -1 to 1. The 
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figure highlights that the shape and spread of 

the distribution, along with the rate at which 

reliability declines over time, are determined 

by the value of the parameter β. Specifically, 

when 𝛽 is higher, the distribution becomes 

more peaked, and the rate of reliability 

decline increases. In other words, a larger 

scale parameter 𝛽 results in a narrower and 

more concentrated distribution, which leads 

to a more pronounced drop in reliability as 

time 𝑡 rises. 

 

 

 
Figure 5: Reliability Function of the Generalized Log-Logistic (GLL) Distribution 

 

Thus, the Generalized Log-Logistic (GLL) distribution is defined by three parameters: the 

shape parameter (α), the scale parameter (β), and the location parameter (λ), represented as 

GLL (α, β, λ). The hazard function, which indicates the instantaneous failure rate at any time t, 

is expressed in Equation (7). This function provides critical insight into how the risk of failure 

varies over time based on the distribution's parameters. 

𝐻(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝜆𝑥)𝛼]
, 𝑥 ≥ 0, 𝛽, 𝛼, 𝜆 > 0,  (7) 

Equation (7) clearly shows that the behavior of the hazard rate function is influenced by the 

value of the shape parameter α. Specifically: 

1. When α ≤ 0, the hazard rate function decreases steadily over time, meaning that the risk 

of failure consistently reduces without any rise as time progresses. 

2. When α > 1, the hazard rate function exhibits a unimodal pattern. In this case, the 

function increases initially, reaches a peak at a specific time t, and then gradually diminishes 

toward zero as time t draws near infinity. 

The time at which the hazard rate function reaches its maximum is expressed as 𝑡 = [
𝛼−1

λ𝛼 ]

1

𝛼
   . 

At this point, the hazard rate function is at its highest value, after which it decreases steadily 

and eventually approaches zero as time goes on. 

 

Sub-models The Generalized Log-Logistic (GLL) 

distribution includes several key sub-models, 
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such as the exponential, Burr XII, Weibull, 

log-logistic, and standard log-logistic 

distributions, each derived by setting specific 

parameters. For example, the exponential 

distribution emerges from the GLL when the 

shape parameter α approaches 1 and the 

location parameter λ is set to zero. Adjusting 

the GLL's parameters also yields the Burr XII 

distribution for heavy-tailed data and the 

Weibull distribution for varying hazard rates. 

The log-logistic and standard log-logistic 

distributions are used in survival analysis, 

with the former being more general and the 

latter a simplified version. Additionally, the 

log-shaped distribution is another variant 

with a different parameterization influencing 

the hazard function. These variations 

highlight the GLL distribution's flexibility in 

modeling diverse data types (Malik and 

Ahmad 2020). 

Log-Logistic Distribution 

Consider a random variable 𝑋 that adheres 

to a generalized log-logistic distribution, 

denoted as 𝑋~𝐺𝐿𝐿(𝛼, 𝛽, 𝜆). If the parameter 

𝜆 depends on 𝛽 such that  𝛽 = 𝜆, the hazard 

rate function of the GLL distribution 

simplifies to that of a standard log-logistic 

distribution. 

The hazard rate function for the GLL 

distribution is defined as: 

𝐻(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝜆𝑥)𝛼]
  

By substituting  𝜆 = 𝛽 into the above 

formula, we derive: 

𝐻(𝑥, 𝛼, 𝛽) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝛽𝑥)𝛼]
=

𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝛽𝑥)𝛼]
, (8) 

This expression matches the hazard rate 

function of a two-parameter log-logistic 

distribution, which is characterized by the 

shape parameter  𝛼 and scale parameter β.  

From the simplified hazard rate function, 

𝐻(𝑥, 𝛼, 𝛽) , it can be analyzed that for 0 <
𝛼 ≤ 1  , the hazard rate is monotonically 

decreasing as 𝑥 increases. This implies that 

the likelihood of failure or occurrence 

decreases over time. Conversely, for 𝛼 > 1, 

the hazard rate function is unimodal, meaning 

it initially increases, reaches a peak, and then 

decreases. The peak or maximum hazard rate 

occurs at 𝑥 =
1

𝛽
(𝛼 − 1)

1

𝛼, indicating the most 

likely point of occurrence before the rate 

begins to decline. Thus, the generalized log-

logistic distribution reduces to the classic log-

logistic form with two parameters, providing 

insight into the behavior of the hazard rate 

under different values of 𝛼 

Standard Log-Logistic Distribution 

Consider a random variable 𝑋 that follows a 

generalized log-logistic distribution, denoted 

as 𝑋~𝐺𝐿𝐿(𝛼, 𝛽, 𝜆).  Suppose that the 

parameters 𝛽 and 𝜆 are such that  𝛽 = 𝜆 = 1 . 

Under this specific condition, the hazard rate 

function of the generalized log-logistic (GLL) 

distribution simplifies to that of the standard 

log-logistic distribution. 

By substituting 𝛽 = 𝜆 = 1   into Equation 

(7), (Hazard function of GLL), the hazard 

rate function reduces to: 

𝐻 =
𝛼×1×(1×𝑥)𝛼−1

[1+(1×𝑥)𝛼]
=

𝛼(𝑥)𝛼−1

[1+(𝑥)𝛼]
,   (9) 

This expression, given by Equation (9), is 

recognized as the hazard rate function of the 

standard log-logistic distribution with only 

one parameter, 𝛼, which serves as the shape 

parameter. The variable 𝑥 > 0, defines the 

support of the distribution, meaning that the 

function is only valid for positive values of 𝑥. 

It is crucial to observe the behavior of the 

hazard rate function for different values of α. 

When  0 < 𝛼 ≤ 1, the hazard rate function is 

monotonically decreasing, which implies that 

the probability of the event decreases as 𝑥 

increases. In contrast, when 𝛼 > 1, the 

hazard rate function is unimodal, indicating a 

non-monotonic pattern where the function 

initially increases to a peak and then 

decreases. The maximum hazard rate occurs 

at the point 𝑥 = (𝛼 − 1)
1

𝛼), representing the 

most likely time of occurrence before the 

hazard rate begins to decline. 

This simplification highlights that under the 

constraints 𝛽 = 𝜆 = 1, the GLL distribution 

converges to the standard log-logistic 

distribution form. The behavior of the hazard 

rate in this setting is determined solely by the 

shape parameter 𝛼, offering a clear 

understanding of the distribution's dynamics 

across different values of α. 

Burr XII Distribution 

Consider a random variable 𝑋 that follows a 

generalized log-logistic distribution, denoted 

by X∼GLL (α, β, λ). Suppose that the 
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parameter λ is related to β through the 

expression 𝜆 = 𝛽𝜏−(
1

𝛼
)
, 𝜏 > 0 , where 𝜏 > 0 

is a constant. Under this relationship, the 

hazard rate function of the generalized log-

logistic (GLL) distribution transforms into 

the hazard rate function of the Burr XII 

distribution. 

 

By substituting expression 𝜆 = 𝛽𝜏−(
1

𝛼
)
 into the hazard rate function (Equation (7)) we obtain: 

𝐻(𝑥, 𝛼, 𝛽) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝛽𝜏
−(

1
𝛼)

𝑥)

𝛼

]

=
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝛽𝜏
−(

𝛼
𝛼)

𝑥𝛼)]

=
𝛼𝛽(𝛽𝑥)𝛼−1

[1+𝑥𝛼]
   (10) 

 

This result is represented by Equation (10), 

which is the hazard rate function of the two-

parameter Burr XII distribution. Here, α is 

the shape parameter controlling the 

distribution’s skewness and tail behavior, 

while β is a scale parameter, influencing the 

spread of the distribution. This derivation 

demonstrates that, under the specified 

substitution, the GLL hazard rate simplifies 

to the Burr XII hazard rate, establishing a 

direct connection between the two 

distributions.  

Analyzing the behavior of the Burr XII 

hazard rate function reveals interesting 

characteristics. When 𝛼 ≤ 1  , the hazard rate 

function is monotonically decreasing as 𝑥 

increases. This implies that the likelihood of 

the event occurring diminishes over time. In 

contrast, when 𝛼 > 1, the hazard rate 

function exhibits an "upside-down bathtub" 

shape. This means the hazard rate initially 

increases, reaches a peak, and subsequently 

decreases to zero as 𝑥 approaches infinity 

(Adeyinka 2019). The maximum hazard rate 

occurs at 𝑥 = (𝛼 − 1)
1

𝛼, indicating the most 

probable time of failure or event occurrence 

before the rate starts to decline. This 

transformation of the GLL hazard rate 

function into the Burr XII hazard rate 

function under the specified parameter 

condition demonstrates the flexibility and 

generality of the GLL distribution. By 

adjusting the relationship between λ and β, 

the GLL distribution can model various 

hazard rate behaviors, including those of the 

Burr XII distribution, allowing for robust 

modeling of diverse datasets. 

Weibull Distribution  

Consider a random variable 𝑋 that follows a 

generalized log-logistic distribution, denoted 

as 𝑋~𝐺𝐿𝐿(𝛼, 𝛽, 𝜆).  Suppose the parameter λ 

is such that 𝜆𝛼 → 0. Under this condition, the 

hazard rate function of the generalized log-

logistic (GLL) distribution converges to the 

hazard rate function of the Weibull 

distribution. 

The hazard rate function of the GLL 

distribution is expressed as: 

𝐻(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝜆𝑥)𝛼]
 ,  

 When 𝜆𝛼 → 0 , the term (𝜆𝑥)𝛼 becomes 

negligible, simplifying the hazard rate 

function to: 

𝐻(𝑥, 𝛼, 𝛽) =
𝛼𝛽(𝛽𝑥)𝛼−1

1+0
= 𝛼𝛽(𝛽𝑥)𝛼−1,  (11) 

The expression, shown in Equation (11), is 

precisely the hazard rate function of a 

Weibull distribution with shape parameter α 

and scale parameter β. This result illustrates a 

key property of the GLL distribution, 

highlighting its ability to approximate the 

behavior of the Weibull distribution when  𝜆𝛼  

is very close to zero. The GLL distribution 

becomes particularly effective in modeling 

hazard rates that are monotonically increasing 

when 𝛼 > 1   and τ (𝑤ℎ𝑒𝑟𝑒, 𝜏 = 𝜆
1

𝛼⁄ ) is 

close to zero, indicating a very small value of 

λ. 

The behavior of the Weibull hazard rate 

function is determined by the value of the 

shape parameter 𝛼. 0 < 𝛼 < 1, the hazard 

rate function decreases as 𝑥 increases, 

indicating a diminishing likelihood of an 

event or failure over time, which is typical of 

situations where the risk decreases with age 

or usage. For 𝛼 > 1  , the hazard rate 

function is monotonically increasing, 

suggesting that the likelihood of the event or 

failure becomes higher as  𝑥 increases, which 

is common in aging processes where the risk 

increases over time. When 𝛼 = 1 , the hazard 

rate function remains constant, corresponding 

to the exponential distribution, which 
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represents a memoryless process where the 

probability of occurrence is the same 

regardless of the elapsed time, implying that 

past events do not affect future risks. Thus, 

the ability of the GLL distribution to 

converge to the Weibull distribution under 

certain parameter constraints, such as 𝜆𝛼 →
0, provides it with flexibility in handling 

different types of hazard rate behaviors, 

whether decreasing, constant, or increasing. 

This adaptability makes it a powerful tool in 

analyzing different datasets (Lima and 

Cordeiro 2017).  

 Exponential Distribution  

Starting with the hazard rate function of the 

Weibull distribution given by Equation (11), 

𝐻(𝑥, 𝛼, 𝛽) = 𝛼𝛽(𝛽𝑥)𝛼−1, 
we observe that when the shape parameter α 

is set to 1, this function simplifies to the 

hazard rate function of the exponential 

distribution. By substituting 𝛼 = 1 into the 

Weibull hazard rate equation, the expression 

becomes: 

𝐻(𝑡, 𝛽) = 𝛽 × 1 × (𝛽 × 𝑡)1−1 = 𝛽 

Thus, the hazard rate function reduces to: 

𝐻(𝑡, 𝛽) = 𝛽 (12) 

Equation (12) represents the hazard rate 

function of the exponential distribution, 

characterized by a constant hazard rate β. 

This indicates that the probability of an event 

occurring remains constant over time, 

independent of any previous occurrences. The 

exponential distribution is commonly used to 

model the time between independent events 

that happen at a constant rate, such as the 

time until a machine fails or the time between 

customer arrivals in a queuing system 

(Georgopoulos and Seinfeld 1982). However, 

due to its inherent assumption of a constant 

hazard rate, the exponential distribution is not 

suitable for modeling CO2 emissions data. 

CO2 emissions are influenced by various 

dynamic factors such as economic growth, 

energy consumption, regulatory policies, 

technological advancements, and seasonal 

variations which result in non-constant and 

often complex patterns over time. The 

exponential distribution’s simplicity does not 

account for trends, cycles, or other temporal 

dependencies that are typical in CO2 

emissions data. 

Table 1 illustrates how the Generalized Log-

Logistic (GLL) distribution can be reduced to 

its various sub-models under specific 

parameter conditions. 

 

Table 1: Sub-Models Derived from the Generalized Log-Logistic Distribution 

Probability Distributions 𝜶 𝜸 𝜷 

Burr XII Distribution 𝛼 
𝜆 = 𝛽𝜏−(

1
𝛼

)
, 𝜏 > 0 𝜆 = 𝛽𝜏−(

1
𝛼

)
, 𝜏 > 0 

Weibull Distribution 𝜆𝛼 → 0 𝜆𝛼 → 0 𝛽 

Standard log-logistic Distribution 𝛼 𝜆 = 𝛽 = 1 𝛽 = 𝜆 = 1 

Log-logistic Distribution 𝛼 𝜆 =  𝛽 𝛽 = 𝜆 

Exponential Distribution 𝛼 = 1 𝜆 → 0 𝛽 

 

Statistical Properties of GLL Distribution  

This section details important statistical and 

mathematical attributes of the GLL 

distribution, including its moments, moment 

generating function, mode, quantile function, 

median, skewness, and kurtosis. It also 

provides insights into how these properties 

influence the distribution's behavior and 

characteristics. 

Quantiles Function 

The quantile function, serving as the inverse 

of the cumulative distribution function 

(CDF), is a fundamental tool in statistical and 

quantitative data analysis CDF (Midhu et al. 

(2013)). It provides a way to understand the 

distribution of data by specifying the value 

below which a given percentage of 

observations fall. Probability distributions 

can be described either through the quantile 

function or the. Quartiles are specific 

percentiles that divide the data into four equal 

segments, helping to summarize the 

distribution. Specifically, the first quartile 

(Q1) represents the 25th percentile, indicating 

that 25% of the data falls below this value. 

The second quartile (Q2), also known as the 

median, is the 50th percentile, marking the 

midpoint of the data where half of the values 
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are below and half are above. The third 

quartile (Q3) corresponds to the 75th 

percentile, showing that 75% of the data lies 

below this value. These quartiles are crucial 

for understanding the spread and central 

tendency of the data, providing information 

into the distribution's variability and 

skewness. 

Theorem 1: For a random variable 𝑋 that 

follows a Generalized Log-Logistic (GLL) 

distribution with parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 , the 

quantile function can be used to compute 

various quantiles of the distribution. 

Specifically, the quantile function for the 

lower quantile, median, and upper quantile 

are given by Equations (14), (15), and (16), 

respectively. These equations provide the 

values below which a specified proportion of 

observations fall, enabling precise 

determination of the distribution's lower and 

upper bounds, as well as its central tendency. 

 

𝑋𝑞 = 𝐹−1(𝑞, 𝛼, 𝛽, 𝜆) =

[(
1

1−𝑝
)
(
𝜆
𝛽

)
𝛼

−1]

(
1
𝛼)

𝜆
  (13) 

𝑋𝑞1 =

[(
4

3
)
(
𝜆
𝛽

)
𝛼

−1]

(
1
𝛼)

𝜆
  (14) 

𝑋𝑞2 =

[(2)
(
𝜆
𝛽

)
𝛼

−1]

(
1
𝛼)

𝜆
 (15) 

 𝑋𝑞3 =

[(4)
(
𝜆
𝛽

)
𝛼

−1]

(
1
𝛼)

𝜆
 (16) 

To derive the quantile function of the Generalized Log-Logistic (GLL) distribution, we start 

with the cumulative distribution function (CDF): 

𝐹(𝑥) = 1 − {1 + ((𝜆𝑥)𝛼)}−(
𝛽

𝜆
)
𝛼

          

We set 𝐹(𝑥) = 𝑝, where 𝑝 ∈ [0,1] to find the quantile 𝑋𝑞 = 𝐹−1(𝑝, 𝛼, 𝛽, 𝜆): 

1 − {1 + ((𝜆𝑥)𝛼)}−(
𝛽

𝜆
)
𝛼

= 𝑝  

Isolate the exponential term: 

{1 + ((𝜆𝑥)𝛼)}−(
𝛽

𝜆
)
𝛼

= 1 − 𝑝  

Take the reciprocal and adjust the exponent: 

{1 + ((𝜆𝑥)𝛼)}(
𝛽

𝜆
)
𝛼

=
1

1−𝑝
  

Raise both sides to the power (
𝛽

𝜆
)

𝛼

: 

1 + (𝜆𝑥)𝛼 = (
1

1−𝑝
)

(
𝛽

𝜆
)
𝛼

  

Subtract 1 from both sides: 

(𝜆𝑥)𝛼 = (
1

1−𝑝
)

(
𝛽

𝜆
)
𝛼

− 1  

Take the 𝛼 − 𝑡ℎ root: 

𝜆𝑥 = [(
1

1−𝑝
)

(
𝛽

𝜆
)
𝛼

− 1]

1

𝛼

  

Solve for 𝑥: 
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𝑥 =
1

𝜆
[(

1

1−𝑝
)

(
𝛽

𝜆
)
𝛼

− 1]

1

𝛼

  

Thus, the quantile function is: 

𝐹−1(𝑝, 𝛼, 𝛽, 𝜆) = [(
1

1−𝑝
)

(
𝛽

𝜆
)
𝛼

− 1]

1

𝛼

, 𝑝 ∈ [0,1], 𝛼 > 0, 𝛽 > 0, 𝜆 > 0 

Similarly, Equations (14)– (16) can be derived by applying the following values: the lower 

quartile is set to 1/4, the median to 2/4 =1/2, and the upper quartile to 3/4. 

 

Skewness and Kurtosis  

Skewness and kurtosis are important 

statistical metrics that characterize the shape 

and symmetry of probability distributions. 

Skewness indicates the degree and direction 

of asymmetry relative to a perfectly 

symmetrical distribution. Positive skewness 

points to a longer or fatter tail on the right 

side (right-skewed or positively skewed), 

while negative skewness indicates a longer or 

fatter tail on the left side (left-skewed or 

negatively skewed). Kurtosis measures the 

extent of tails in a distribution. Positive 

kurtosis (leptokurtic) signifies heavier tails 

and more extreme values compared to a 

normal distribution, whereas negative 

kurtosis (platykurtic) reflects lighter tails with 

fewer extreme values than a normal 

distribution (mesokurtic). These metrics are 

crucial for understanding the underlying data 

characteristics and selecting appropriate 

statistical models. 

The following Equations (17) define the 

Galton Skewness and Moors Kurtosis for the 

Generalized Log-Logistic (GLL) model with 

three parameters. The following relationship 

defines the mathematical form of the Galton 

Skewness and Moors Kurtosis of the GLL 

model with three parameters:  

 

𝑆𝐾 =
𝑄(3 4⁄ )+𝑄(1 4⁄ )−2𝑄1

2⁄

𝑄(3 4⁄ )−𝑄(1 4⁄ )
,   

𝐾𝑀 =
𝑄(7 8⁄ )+𝑄(3 8⁄ )−𝑄(5 8⁄ )−𝑄(1 8⁄ )

𝑄(3 4⁄ )−𝑄(1 4⁄ )

}  (17) 

where Q represents different quantile values. These expressions can be derived as functions of 

the GLL quantile function. The benefit of these measures lies in their reduced sensitivity to 

outliers and their applicability even when the distribution lacks finite moments  
 

The 𝒓th moments  

The 𝑟th moment of a random variable is a 

measure that captures the distribution of the 

variable's values relative to a particular point. 

It is determined by raising each value of the 

random variable to the power 𝑟 and then 

calculating their average. Moments are 

essential in statistical analysis as they offer 

valuable information about the distribution's 

shape and dispersion. Key moment functions, 

such as the 𝑟th moment, 𝑟th central moment, 

mean, variance, skewness, and kurtosis, are 

critical for understanding the proposed 

distribution's properties and behavior. 

Theorem 2: 

For a random variable 𝑋 following the 

Generalized Log-Logistic (GLL) distribution 

with parameters α, β and λ, the 𝑟th power 

moments, negative moments, and logarithmic 

moments are given by specific functions of 

the distribution parameters: 

 

 

𝐸(𝑋𝑟) =
𝛽𝛼

𝜆𝛼+𝑟 ×
Г((

𝛽

𝜆
)
𝛼
)−(

𝑟

𝛼
)Г((

𝑟

𝛼
)+1)

Г((
𝛽

𝜆
)
𝛼
+1)

, for 
𝛼𝛽𝛼

𝜆𝛼 > 𝑟  (18) 
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𝐸(𝑋−𝑟) =
𝜏𝛼+𝑟

𝛽𝑟 ×
Г((

𝛽

𝜆
)
𝛼
)+1

Г((
𝛽

𝜆
)
𝛼
−(

𝑟

𝛼
))Г((

𝑟

𝛼
)+1)

,  (19) 

Equation (19) can be demonstrated as follows: 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟(𝑥; 𝛽, 𝛼, 𝜆)𝑑𝑥
∞

0
= ∫ 𝑥𝑟 𝛼𝛽(𝛽𝑥)𝛼−1

[1+(𝜆𝑥)𝛼]
(
𝛽𝛼

𝜆𝛼)+1
𝑑𝑥 =

𝛼𝛽

Г((
𝛽

𝜆
)
𝛼
+1)

∞

0
∫ 𝑥𝑟 (𝛽𝑥)𝛼−1

1+(𝜆𝑥)𝛼

∞

0
𝑑𝑥  

           =
𝛽𝛼

𝜆𝛼+𝑟 ×
Г((

𝛽

𝜆
)
𝛼
)−(

𝑟

𝛼
)Г((

𝑟

𝛼
)+1)

Г((
𝛽

𝜆
)
𝛼
+1)

, for 
𝛼𝛽𝛼

𝜆𝛼 > 𝑟. (20) 

Using the moment-generating function, we can determine the mean and variance of the random 

variable 𝑋 with a Generalized Log-Logistic (GLL) distribution having parameters α, β and λ as 

follows: 

 To obtain the mean, we substitute 𝑟 = 1  into Equation (18) to get Equation (21) 

𝐸(𝑋) = 𝜇 =
𝛽𝛼

𝜆𝛼 ×
Г(((

𝛽

𝜆
)
𝛼
)−(1 𝛼⁄ )Г(1 𝛼⁄ )+1)

Г((
𝛽

𝜆
)
𝛼
+1)

,
𝛼𝛽𝛼

𝜆𝛼⁄ > 1.  (21) 

The variance of the random variable 𝑋~𝐺𝐿𝐿(𝛼, 𝛽, 𝜆) is given by: 

𝑉(𝑋) = 𝜎2 = 𝐸(𝑋2) − (𝐸(𝑋))
2
  

=
𝛽𝛼

𝜆𝛼+2 ×
Г((

𝛽

𝜆
)
𝛼
)−(

2

𝛼
)Г((

2

𝛼
)+1)

Г((
𝛽

𝜆
)
𝛼
+1)

− (
𝛽𝛼

𝜆𝛼 ×
Г(((

𝛽

𝜆
)
𝛼
)−(1 𝛼⁄ )Г(1 𝛼⁄ )+1)

Г((
𝛽

𝜆
)
𝛼
+1)

)

2

,
𝛼𝛽𝛼

𝜆𝛼⁄ > 2. (22) 

 

The rth Central Moments 

Central moments are a set of statistical 

measures used to assess the symmetry and 

dispersion of the data in order to characterize 

the form and properties of a probability 

distribution. Central moments are computed 

using deviations from the distribution's mean 

as opposed to raw moments, which are based 

on departures from a predetermined point. 

The first, second and rth central moments of 

the GLL distribution presented as follows; 

First central moment is the same as the 

average (mean). Thus,  

 

𝑐1 = 𝜇1
′ = 𝐸(𝑋) =

𝛽𝛼

𝜆𝛼 ×
Г(((

𝛽

𝜆
)
𝛼
)−(1 𝛼⁄ )Г(1 𝛼⁄ )+1)

Г((
𝛽

𝜆
)
𝛼
+1)

 , 

The second central moment, which measures the dispersion of a distribution, is equivalent to 

the variance. It quantifies the extent to which the values of a random variable deviate from the 

mean. 

𝑐2 = 𝐸(𝑋2) − (𝐸(𝑋))
2

=
𝛽𝛼

𝜆𝛼+2 ×
Г((

𝛽

𝜆
)
𝛼
)−(

2

𝛼
)Г((

2

𝛼
)+1)

Г((
𝛽

𝜆
)
𝛼
+1)

− (
𝛽𝛼

𝜆𝛼 ×
Г(((

𝛽

𝜆
)
𝛼
)−(1 𝛼⁄ )Г(1 𝛼⁄ )+1)

Г((
𝛽

𝜆
)
𝛼
+1)

)

2

  

𝑐𝑟 = 𝜇𝑟
, − ∑ (

𝑟 − 1

𝑛 − 1
) 𝑐𝑛𝜇𝑟−𝑛

′

𝑟−1

𝑛=1

=
𝛽𝛼

𝜆𝛼+𝑟
×

Г ((
𝛽
𝜆
)

𝛼

) − (
𝑟
𝛼
) Г ((

𝑟
𝛼
) + 1)

Г ((
𝛽
𝜆
)

𝛼

+ 1)

− 

                  −∑ (𝑟−1
𝑛−1

)𝑐𝑛
𝛽𝛼

𝜆𝛼+(𝑟−𝑛) ×𝑟−1
𝑛=1

Г((
𝛽

𝜆
)
𝛼
)−(

𝑟−𝑛

𝛼
)Г((

𝑟−𝑛

𝛼
)+1)

Г(((
𝛽

𝜆
)
𝛼
)+1)

 (23) 

Consequently, we can determine the generalized log logistic distribution's skewness and 

kurtosis as follows; 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝐶3

(𝜎2)
3

2⁄
, 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐶4

(𝜎2)2 
  (24)  

 

Estimation of the GLL Distribution 

Parameters 

The parameters of the Generalized Log-

Logistic (GLL) distribution (𝛼, β and 𝜆)  can 

be estimated using various techniques, 

including percentile-based methods, weighted 

least squares (WLS), maximum likelihood 

estimation (MLE), and ordinary least squares 

(OLS). The literature has extensively 

explored and compared these estimation 

techniques for different probability 

distributions. Key references providing in-

depth analyses include works by Kundu and 

Raqab 2005, Alkasasbeh and Raqab 2009, 

Mazucheli et al. 2013, do Espirito Santo and 

Mazucheli 2015, and Dey et al. 2016. This 

study focuses on a detailed examination of 

the MLE method, which serves as a 

benchmark for other estimation techniques, 

as well as the weighted least squares (WLS) 

and ordinary least squares (OLS) methods.  

 Maximum likelihood estimation Method  

The maximum likelihood estimation (MLE) 

method is widely favored in research due to 

its desirable properties, such as consistency, 

asymptotic efficiency, and invariance (Dey et 

al. 2016). Consistency ensures that as the 

sample size increases, the estimates converge 

to the true parameter values. Asymptotic 

efficiency guarantees that MLE provides the 

minimum variance among unbiased 

estimators in large samples. The invariance 

property means that if a parameter 

transformation is applied, the MLE of the 

transformed parameters can be derived from 

the MLE of the original parameters. For a 

random sample of size 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛, 

drawn from a Generalized Log-Logistic 

(GLL) distribution, the MLE for the 

parameters is obtained through a specific 

estimation process. 

 

𝐿 = ∏ 𝑓(𝑥𝑖 , 𝛼, 𝛽, 𝜆),𝑛
𝑖=1   

𝐿(𝑥; 𝛼, 𝛽, 𝜆) = ∏
𝛼𝛽(𝛽𝑥𝑖)

𝛼−1

[1+(𝜆𝑥𝑖)
𝛼]((𝜆)𝛼)+1

𝑛
𝑖=1   (25) 

Let ℓ = InL  

ℓ = nIn(𝛼𝛽) + (𝛼 − 1)∑ 𝐼𝑛(𝛽𝑥𝑖)
𝑛
𝑖=1 − ∑ 𝐼𝑛[1 + (𝜆𝑥𝑖)

𝛼]𝑛
𝑖=1 − (

𝛽
𝜆

⁄ )∑ 𝐼𝑛(1 + (𝜆𝑥𝑖)
𝛼)𝑛

𝑖−=1 . 

(27) 
∂ℓ

∂α
= 0 ⇒

𝑛

𝛼
+ ∑ ln(𝛽𝑥𝑖) − ∑ {

(𝛾𝑥𝑖)
𝛼 ln(𝜆𝑥𝑖)

1+(𝜆𝑥𝑖)
𝛼 } − (

𝛽
𝜆

⁄ )∑ {
(𝛾𝑥𝑖)

𝛼 ln(𝜆𝑥𝑖)

1+(𝜆𝑥𝑖)
𝛼 } ,𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1  (26) 

∂ℓ

∂β
= 0 ⇒

𝑛

𝛽
+ 𝑛𝛽(𝛼 − 1) − 1

𝜆⁄ ∑ ln(1 + 𝜆𝑥𝑖),
𝑛
𝑖=1   (27) 

∂ℓ

∂λ
= 0 ⇒ −∑ {

(𝛾𝑥𝑖)
𝛼 ln(𝛾𝑥𝑖)

1+(𝜆𝑥𝑖)
𝛼 } − (

𝛽
𝜆2⁄ )∑ {

(𝛾𝑥𝑖)
𝛼 ln(𝜆𝑥𝑖)

1+(𝜆𝑥𝑖)
𝛼 } .𝑛

𝑖=1
𝑛
𝑖=1  (28) 

The maximum likelihood estimates (MLEs) 

for parameters α, β, and λ can be obtained by 

equating the derivative of the likelihood 

function to zero and solving the resulting set 

of nonlinear equations numerically. Given the 

complexity involved in the expected 

information matrix, the observed information 

matrix, denoted as J(θ), is typically used 

instead to derive confidence intervals for the 

model parameters. The observed information 

matrix is expressed as follows: 

 

J(𝜃) = −

[
 
 
 
 
∂2ℓ

∂2𝛼

∂2ℓ

∂α∂β

∂2ℓ

∂α∂λ

.
∂2ℓ

∂2𝛽

∂2ℓ

∂β∂∂

. .
∂2ℓ

∂2𝜆 ]
 
 
 
 

,  (29) 

where: 𝜃 = (𝛼, 𝛽, 𝜆)′. Under standard regularity conditions, when the parameters are within the 

interior of the parameter space (excluding the boundary), the scaled difference √𝑛(≅ 𝜃 − 𝜃)  , 

where θ is the true parameter vector and ≅θ is its estimator, converges in distribution to a 

multivariate normal distribution, denoted as 𝑁3(0, 𝐼−1(𝜃)). 
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The expected Fisher information matrix, I(θ), 

provides a measure of the information that an 

observable random variable carries about an 

unknown parameter. However, due to 

practical difficulties in computing I(θ), it is 

often replaced by the observed information 

matrix, J(θ), which is derived from the 

second derivatives of the log-likelihood 

function with respect to the parameters. 

Despite this substitution, the asymptotic 

normality of the distribution remains valid. 

Consequently, the asymptotic distribution 

𝑁3(0, 𝐽−1(𝜃))  can be applied to construct 

two-sided confidence intervals for the model 

parameters at a chosen confidence level of 

100(1 - τ) %, where τ is the significance level 

(Mazucheli et al. 2013). This approach is 

commonly employed in statistical inference 

to provide robust interval estimates for 

parameter uncertainty in complex models. 

 Standard and Weighted Least Square 

Estimation 

Weighted Least Squares Estimation (WLSE) 

is a statistical method designed to handle 

heteroscedasticity, or unequal error 

variability, when estimating parameters of a 

statistical model (Kundu and Raqab 2005). 

Unlike Standard Least Squares Estimation 

(LSE), which minimizes the sum of squared 

differences between predicted and observed 

values by treating all observations equally, 

WLSE assigns different weights to 

observations to reflect varying levels of 

accuracy or reliability associated with each 

data point (Swain et al. 1988). By minimizing 

the weighted sum of squared differences, 

WLSE gives greater importance to more 

precise data points, making it particularly 

useful in situations where error variability 

differs significantly across different parts of 

the dataset. 

For the generalized log-logistic (GLL) 

distribution, the WLSE involves minimizing 

the weighted squared differences between the 

model's predicted values and the actual 

observations. Consider a random variable 𝑥 

with a sample size of  𝑛 denoted as 

(𝑥1, 𝑥2, … , 𝑥𝑛), drawn from a GLL 

distribution. The WLSE for this distribution 

can be formulated by assigning appropriate 

weights to the squared differences and 

solving for the model parameters that 

minimize this weighted sum. 

𝑓(𝑥𝑖; 𝛼, 𝛽, 𝜆) = 𝛼
𝛽⁄ (1 + (

𝑥𝑖−𝜆

𝛽
)

𝛼+1

)
−1

  

 

The WLSE seeks to minimize the weighted sum of squared differences, which is represented 

by: 

𝑆 = 𝑊𝐿𝑆𝐸(𝛼, 𝛽, 𝜆) = ∑ 𝑤𝑖
𝑛
𝑖=1 (𝑥𝑖 − 𝑓(𝑥𝑖 ; 𝛼, 𝛽, 𝜆))

2
 (30) 

Where 𝑤𝑖   represents the significance weight assigned to each observation in the dataset. To 

determine the Weighted Least Squares Estimates (WLSE) for the parameters (𝛼, 𝛽 and λ), the 

partial derivatives of Equation (32) with respect to each of these unknown parameters must be 

calculated. After taking these derivatives, the resulting system of equations is set to zero, and 

then solved to obtain the WLSE for the parameters. 

∂S

∂α
= 0 ⇒ −2∑ 𝑤𝑖(𝑥𝑖 − 𝑓(𝑥𝑖 ; 𝛼, 𝛽, 𝜆)) 1

𝛽⁄ (1 + (
𝑥𝑖−𝜆

𝛽
)

𝛼+1

)
−2

𝑙𝑜𝑔 (
𝑥𝑖−𝜆

𝛽
)𝑛

𝑖=1  (31) 

∂S

∂β
= 0 ⇒ 2∑ 𝑤𝑖(𝑥𝑖 − 𝑓(𝑥𝑖; 𝛼, 𝛽, 𝜆)) 𝛼

𝛽2⁄ (1 + (
𝑥𝑖−𝜆

𝛽
)

𝛼+1

)
−2

(𝛼 + 1 − (
𝑥𝑖−𝜆

𝛽
)

𝛼+1

)𝑛
𝑖=1  (32) 

∂S

∂λ
= 0 ⇒ 2∑ 𝑤𝑖(𝑥𝑖 − 𝑓(𝑥𝑖 ; 𝛼, 𝛽, 𝜆)) 𝛼(𝛼 + 1)

𝛽⁄ (1 + (
𝑥𝑖−𝜆

𝛽
)

𝛼+1

)
−2

(
𝑥𝑖−𝜆

𝛽
)

𝛼
𝑛
𝑖=1  (33) 

Given the complexity involved in solving 

Equations 33-35, numerical optimization 

techniques are commonly employed to solve 

the system of equations formed by setting 

these derivatives to zero. Some of the widely 

used optimization algorithms include 

Newton's method, gradient descent, and 

quasi-Newton methods. In this context, the 

objective function is the weighted sum of 

squared differences, and these algorithms 

iteratively adjust the parameter values to 

minimize this function. 
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Numerical Results and Discussion  

This section presents the results of analyzing 

CO₂ emissions in Tanzania using the 

Generalized Log-Logistic (GLL) distribution. 

The GLL distribution is applied to model and 

interpret statistical patterns in CO₂ emissions 

and is compared with the log-normal 

distribution. Additionally, the analysis 

assesses the GLL distribution alongside its 

two-parameter sub-models, including the 

Burr XII, log-logistic, and Weibull 

distributions, to evaluate its robustness in 

capturing emission trends. Descriptive 

statistics, model validity and selection 

criteria, the likelihood ratio test, and Monte 

Carlo simulations for comparing estimation 

method results are also presented in this 

section. 

Descriptive Statistics 

The results in Table 2 reveals a mean 

emission value of 4.35 megatons, indicating 

the average level of CO2 emissions over the 

observed period. The median value of 2.43 

megatons suggests that half of the 

observations fall below this level, reflecting a 

right-skewed distribution, as further 

confirmed by the positive skewness value of 

1.55. The mode of 2.063 megatons shows the 

most frequently occurring emission level. The 

high variance (15.10) and standard deviation 

(3.89) indicate significant variability in 

emissions, with values ranging from a 

minimum of 0.703 to a maximum of 15.57 

megatons. The positive kurtosis (1.29) 

implies a leptokurtic distribution, where there 

are more extreme values compared to a 

normal distribution. These findings suggest 

that while there are periods of low emissions, 

there are also instances of significantly higher 

emissions, which could indicate periods of 

increased industrial activity or other pollution 

sources. This variability and trend towards 

higher emission values have serious 

environmental implications, as rising CO2 

levels are directly linked to climate change, 

increased greenhouse gas effects, and broader 

impacts on ecosystems and human health. 

 

Table 2: Summary Statistic of the Carbon dioxide Emissions  

Mean Median Mode Variance Skewness Kurtosis Minimum Maximum 

4.35 2.43 2.063 15.10 1.55 1.29 0.703 15.57 

 

Table 3: Moments, Standard Deviation, Skewness, and Kurtosis for some GLL parameter 

values 

 

Moments 

 

(0.2,0.2,0.2) 

 

(0.5,1.0,1.0) 

(𝛽, 𝛼, 𝜆) 

2.0,2.5,3.0) 

 

(1.5,2.5,2.0) 

 

(1.5,1,5, 2.5) 

 

(4.5, 5.0,2.5) 

𝜇1
′  0.2151 0.3011 0.3503 0.4932 0.3717 0.4501 

𝜇2
′  0.1456 0.2751 0.3217 0.4021 0.3145 0.2018 

𝜇3
′  0.1034 0.2473 0.3005 0.3671 0.2671 0.1726 

𝜇4
′  0.1006 0.2016 0.2715 0.3237 0.2025 0.1501 

𝜇5
′  0.0345 0.1673 0.2201 0.3025 0.1972 0.1027 

SD 0.3218 0.3788 0.3921 0.4521 0.6191 0.5281 

Skewness 1.0861 0.8755 0.8023 0.7602 0.8160 -0.2671 

Kurtosis 4.7832 3.5671 3.3217 3.1230 4.2910 2.8913 

 

The Table 3 presents statistical properties of a 

Generalized Log-Logistic Distribution (GLL) 

for different parameter sets. For the first set 

of parameters (0.2, 0.2, 0.2), the distribution 

exhibits a strongly positively skewed shape 

(skewness of 1.0861), indicating a longer tail 

on the right side, and a kurtosis of 4.7832 

suggests heavy tails and potential outliers. 

The second set (0.5, 1.0, 1.0) shows a 

somewhat lower skewness (0.8755) and 

kurtosis (3.5671), still indicating a right-

skewed distribution. The third set (2.0, 2.5, 

3.0) exhibits further reductions in skewness 

and kurtosis, indicating a more symmetric 

and lighter-tailed distribution. The fourth set 

(1.5, 2.5, 2.0) shows a similar trend toward 

less skewness and kurtosis. Finally, the fifth 

set (1.5, 1.5, 2.5) displays a moderate degree 

of skewness (0.8160) but lower kurtosis 

(4.2910), indicating a somewhat heavier-
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tailed distribution. These moments, standard 

deviations, skewness, and kurtosis statistics 

provide valuable insights into the shape and 

behavior of the GLL distribution under 

various parameter conditions. 

 

Model Validity and Selection Criterion  

To assess the suitability of the GLL model for 

the utilized datasets, several metrics were 

evaluated including the negative log-

likelihood value, Akaike Information 

Criterion (AIC), Bayesian Information 

Criterion (BIC), Kolmogorov-Smirnov (K-S) 

distance, and p-value. The AIC and BIC were 

calculated using the equations: 

The AIC and BIC are defined in Equations 

(36) and (37) respectively;  

𝐴𝐼𝐶 = 2𝑞 − 2𝑙  (36) 

𝐵𝐼𝐶 = 𝑞𝐼𝑛(𝑛) − 2𝑙 (37) 

where 𝑙 represents the log-likelihood function 

estimated via Maximum Likelihood 

Estimation (MLE),  𝑛 denotes the total 

number of observations, and 𝑞 indicates the 

number of model parameters. 

In addition to these criteria, we considered 

the negative log-likelihood value, which 

indicates model fit with lower values 

suggesting better fit, and the K-S distance, 

which measures the deviation between the 

empirical and theoretical distributions smaller 

values are preferable. The p-value assesses 

the significance of the goodness-of-fit 

measures, with higher values suggesting a 

better fit to the data. Detailed results, 

including these metrics, negative log-

likelihood values obtained through MLE, and 

their standard errors (in parentheses), are 

presented in Table 4. These metrics provide a 

comprehensive evaluation of the model's 

performance and its suitability for the 

datasets. 

Table 4: Information Criterion, MLE estimates, log-likelihood and Goodness of fit  

Model Estimates (SE) AIC BIC K-S(p-value) −𝒍 
GLL (𝛼, 𝛽, 𝜆) 𝛼 = 0.871(0.021) 

𝛽 = 0.652(0.056) 

𝜆 =0.341(0.012) 

607.081 614.321 0.032 

(0.762) 

467.326 

Burr-XII 

(𝛼, 𝛽) 

𝛼 =1.342(0.231) 

𝛽 =0.562(0.038) 

615.620 623.083 0.058 

(0.742) 

470.003 

Weibull 

(𝛼, 𝛽) 

𝛼 =0.651(0.012) 

𝛽 =4.831(0.604) 

637.042 641.003 0.046 

(0.745) 

472.302 

LN (𝜇, 𝜎) 𝜇 =-0.321(0.281) 

𝜎 =2.092(0.002) 

609.027 617.033 0.072 

(0.759) 

469.002 

EXP (𝛼, 𝛽𝜏) 𝛼 =0.521(0.012) 

𝛽 =0.722(0.010) 

𝜏 =1.621(0.183) 

623.208 637.087 0.062 

(0.533) 

502.203 

LL (𝛼, 𝛽) 𝛼 =0.431(0.051) 

𝛽 =1.016(0.075) 

665.091 671.091 0.064 

(0.509) 

481.017 

SLL (𝛼) 𝛼 =0.217(0.027) 626.071 638.081 0.075 

(0.677) 

478.087 

 

In comparing the Generalized Log Logistic 

Distribution (GLL) with six other 

distributions; Burr II, Weibull, Log-Normal 

(LN), Exponential (EXP), Log-Logistic (LL), 

and Standard Log-Logistic (SLL) the results 

in Table 4 reveal that GLL achieves the 

lowest AIC and BIC among the distributions 

evaluated. This suggests that the GLL model 

fits the dataset better than the other 

distributions, indicating its potential 

effectiveness in accurately representing the 

underlying data distribution. These findings 

highlight GLL’s capability to capture the 

data's statistical characteristics more 

precisely, which is critical in model selection 

and data analysis. Additional analysis of 

model performance metrics could further 

elucidate the most suitable distribution for the 

dataset. 
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The parameters of the Generalized Log 

Logistic Distribution (GLL) have been 

estimated using three different methods: 

Maximum Likelihood Estimation (MLE), 

Least Squares Estimation (LSE), and 

Weighted Least Squares Estimation (WLSE). 

As shown in Table 5, the MLE method 

demonstrates superior performance compared 

to the other methods, particularly due to its 

high p-value. This indicates that MLE 

provides parameter estimates that align most 

closely with the data distribution. 

Consequently, MLE emerges as a robust and 

reliable method for estimating GLL 

parameters, highlighting its efficacy in 

capturing the dataset's statistical properties. 

 

Table 5: The Goodness of Fit Statistics for GLL Parameter Estimated under Various Methods 

Estimation 

Method 

�̂� �̂� �̂� 𝑙 𝐾 − 𝑆 𝑃 − 𝑣𝑎𝑙𝑢𝑒 

MLE 0.871 0.652 0.341 -467.326 0.051 0.762 

LSE 1.023 0.8621 0.674 -470.981 0.078 0.678 

WLSE 1.008 0.879 0.832 -475.894 0.082 0.476 

 

Likelihood Ratio Test 

The Likelihood Ratio Test (LRT) is a 

statistical method utilized to compare the 

goodness of fit between two nested models in 

hypothesis testing. It determines whether 

adding extra parameters in a more detailed 

model significantly enhances the fit 

compared to a simpler model (Kundu and 

Raqab 2005). In this study, the LRT was 

employed to evaluate the goodness of fit of 

the GLL distribution relative to its five sub-

models. The primary goal was to test the 

following hypotheses: 

(a) H₀₁: 𝜆𝛼 → 0 ; (The sample data 

follows a Weibull distribution, indicating that 

the shape parameter α approaches zero.) vs. 

Hₐ₁: 𝜆𝛼𝑛𝑜𝑡 → 0; (The sample data follows a 

GLL distribution, suggesting that the 

parameter λ does not tend to zero). 

(b) H₀₂: 𝜆 = 𝛽 = 1; (The sample data 

follows a standard log-logistic distribution, 

where the scale parameter λ and shape 

parameter β are both equal to one.) vs. Hₐ₂: 

λ ≠ 𝛽, 𝛽 ≠ 1 ; (The sample data follows a 

GLL distribution, indicating that the 

parameters λ  and β are not equal, and β is not 

equal to one). 

(c) H₀₃: 𝜆 = 0 𝑎𝑛𝑑𝛼 = 1; (The sample 

data follows an exponential distribution, 

characterized by λ being zero and the shape 

parameter α being one.) vs. Hₐ₃: 𝜆 ≠
0 𝑎𝑛𝑑𝛼 ≠ 1; (The sample data follows a 

GLL distribution, where λ is not zero and is 

not one). 

(d) 𝑯𝟎𝟒: 𝜆 = 𝛽; (The sample data 

follows a log-logistic distribution, where the 

scale parameter λ equals the shape parameter 

β) Vs  𝐻𝑎4: 𝜆 ≠ 𝛽 (The sample data follows a 

GLL distribution, indicating that λ and β are 

not equal). 

(e) 𝑯𝟎𝟓: 𝜆 = 𝛽𝜏−(1 𝛼⁄ ), 𝜏 > 0; (The 

sample data follows a Burr XII distribution, 

where, 𝜆 = 𝛽𝜏−(1 𝛼⁄ ),  with τ being positive) 

Vs 𝑯𝒂𝟓: 𝛽𝜏−(1 𝛼⁄ ), 𝜏 ≤ 0  (The sample data 

follows a GLL distribution, where τ is less 

than or equal to zero, altering the relationship 

between λ and β). 

The test statistic, known as the likelihood 

ratio (LR), is determined by comparing the 

maximum likelihood estimates of two 

models: one based on the null hypothesis (H₀) 

and the other based on the alternative 

hypothesis (Hₐ). The likelihood ratio is 

calculated as follows: 

𝐿𝑅 = −2[[𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝐻0 −
 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝐻𝐴] OR 

𝐿𝑅 = −2 ln (
𝐿(�̂�∗;𝑥)

𝑙(𝜔;̂ 𝑥)
) (38) 

The likelihood ratio (LR) test statistic in 

Equation (38) is based on the comparison of 

the maximum likelihood estimates obtained 

under the null hypothesis (H₀) with those 

obtained under the alternative hypothesis 

(Hₐ). Specifically, �̂�∗  denotes the restricted 

maximum likelihood estimates under the null 

hypothesis, while(�̂�) represents the 

unrestricted estimates under the alternative 

hypothesis. Assuming the models are 

appropriately specified, the test statistic 
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follows a chi-squared (χ²) distribution with 

degrees of freedom equal to the difference in 

the number of parameters between the two 

models (i.e., df = number of parameters in 𝐻𝐴 

- number of parameters in 𝐻0). The null 

hypothesis is rejected if the p-value is less 

than the predetermined significance level. 

The results presented in Table 6 indicate that 

the p-values for all five sub-models of the 

Generalized Log Logistic Distribution (GLL) 

fall below the significance threshold. This 

strongly suggests that the dataset aligns well 

with the GLL, supporting its effectiveness in 

characterizing the underlying data 

distribution. These findings highlight the 

robustness of the GLL model in explaining 

the observed CO2 emissions data. 

 

 

Table 6: Likelihood Ratio Test Results  

Sub-models 

Distribution 

Hypotheses LRT P-value Decision 

Weibull 𝐻01: 𝜆
𝛼 → 0; 𝑉𝑠 

𝐻𝑎1: 𝜆
𝛼𝑛𝑜𝑡 → 0 

7.987 0.0071 𝐻01 is rejected 

Standard log logistic 𝐻02: 𝜆 = 𝛽 = 1; 𝑉𝑠 

𝐻𝑎2: 𝜆 ≠ 𝛽, 𝛽 ≠ 1 

9.986 0.0021 𝐻02 is rejected 

Exponential 𝐻03: 𝜆 = 0 𝑎𝑛𝑑𝛼 = 1; 𝑉𝑠 

𝐻𝑎3: λ≠ 0 𝑎𝑛𝑑𝛼 ≠ 1 

34.785 0.0030 𝐻03 is rejected 

Log logistic 𝐻04: 𝜆 = 𝛽; 𝑉𝑠 

𝐻𝑎4: λ≠ 𝛽 

25.892 0.0031 𝐻04 is rejected 

Burr XII 𝐻05: 𝛽𝜏−(1 𝛼⁄ ), 𝜏 > 0; 𝑉𝑠 

𝐻𝑎5: 𝛽𝜏−(1 𝛼⁄ ), 𝜏 ≤ 0 

11.891 0.0042 𝐻05 is rejected 

Monte Carlo Simulation for Comparing 

Estimation Methods  

A Monte Carlo simulation study was 

conducted to evaluate the performance of 

various parameter estimation methods for the 

Generalized Log Logistic Distribution (GLL). 

The study assessed the effectiveness of 

different estimators using metrics such as 

mean average bias and mean squared error 

(MSE). Simulations were performed across 

various sample sizes and parameter values, 

with the process repeated 1,000 times for 

each combination of sample sizes (n = 25, 50, 

100, 500, 1,000) and parameter 

sets (𝛼, 𝛽, 𝜆) =
(1.5, 0.5, 2.0) 𝑎𝑛𝑑 (1.0,0.3, 1.5).The 

estimated parameters for the GLL model, 

obtained through Maximum Likelihood 

Estimation (MLE), Least Squares Estimation 

(LSE), and Weighted Least Squares 

Estimation (WLSE), are detailed in Table 7. 

The simulation results revealed a notable 

trend: as sample size increased, both the 

average bias and MSE consistently 

decreased. Among the estimation methods, 

MLE stood out with superior performance, 

exhibiting significantly lower MSE compared 

to the other methods. Additionally, the 

average bias of the estimates improved with 

larger sample sizes, reflecting greater 

accuracy in estimation. As the sample size 

increase, MLE estimates converged closely to 

the true parameter values, underscoring their 

reliability. Consequently, MLE estimates and 

asymptotic results can be confidently used to 

construct reliable confidence intervals for 

model parameters, even in cases with smaller 

sample sizes. 
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Table 7: Monte Carlo Simulation Results for Comparing Various GLL Estimation Methods 

 

  I II 

Parameters 𝒏 MLE LSE WLSE MLE LSE WSLE 

𝜶 25 

50 

100 

500 

1000 

2.006 (0.062) 

1.971 (0.057) 

1.863 (0.024) 

1.686 (0.021) 

1.502 (0.016) 

3.098 (0.142) 

3.005 (0.137) 

2.891 (0.085) 

2.536 (0.065) 

2.093 (0.046) 

2.871 (0.212) 

2.408 (0.175) 

2.091 (0.143) 

1.783 (0.125) 

1.706 (0.107) 

2.210 (0.071) 

1.791 (0.066) 

1.508 (0.042) 

1.293 (0.035) 

1.006 (0.021) 

3.812 (0.178) 

3.084 (0.124) 

2.781 (0.116) 

2.007 (0.108) 

1.651 (0.092) 

2.876 (0.216) 

2.564 (0.203) 

1.761 (0.184) 

1.603 (0.159) 

1.452 (0.125) 

𝜷 25 

50 

100 

500 

1000 

1.082 (0.054) 

0.975 (0.051) 

0.787 (0.035) 

0.672 (0.021) 

0.503 (0.017) 

2.087 (0.452) 

1.975 (0.405) 

1.762 (0.276) 

1.207 (0.182) 

1.036 (0.103) 

2.451 (0.571) 

2.091 (0.432) 

1.672 (0.331) 

1.577 (0.264) 

1.328 (0.205) 

0.722 (0.045) 

0.593 (0.036) 

0.462 (0.031) 

0.405 (0.026) 

0.302 (0.020) 

1.819 (0.517) 

1.561 (0.453) 

1.086 (0.326) 

0.879 (0.295) 

0.698 (0.232) 

1.605 (1.175) 

1.106 (0.836) 

0.784 (0.657) 

0.592 (0.451) 

0.482 (0.354) 

𝝀 25 

50 

100 

500 

1000 

3.781 (0.082) 

3.500 (0.063) 

2.686 (0.041) 

2.409 (0.034) 

2.005 (0.015) 

4.891 (0.381) 

3.872 (0.327) 

3.103 (0.203) 

2.872 (0.142) 

2.784 (0.113) 

3.983 (0.372) 

3.562 (0.304) 

3.005 (0.276) 

2.651 (0.242) 

2.506 (0.193) 

1.976 (0.033) 

1.721 (0.030) 

1.635 (0.021) 

1.589 (0.018) 

1.506 (0.007) 

2.654 (0.176) 

2.235 (0.152) 

2.067 (0.132) 

1.982 (0.108) 

1.819 (0.095) 

2.781 (0.783) 

2.567 (0.562) 

1.971 (0.376) 

1.784 (0.324) 

1.676 (0.291) 
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Conclusion 

The Generalized Log-Logistic (GLL) model 

demonstrates its suitability for modeling CO₂ 

emissions data in Tanzania from 1961 to 

2022. The GLL model effectively captures 

the patterns and statistical characteristics of 

emissions data, showing a better fit than its 

sub-models (Weibull, Standard log logistic, 

exponential, Log logistic and Burr XII) and 

log-normal distribution. Three estimation 

methods were used in this study: maximum 

likelihood, least squares, and weighted least 

squares. Among these, maximum likelihood 

proved to be the most reliable, demonstrating 

significantly lower mean squared error 

(MSE), making it particularly advantageous 

for larger and small datasets. Additionally, the 

likelihood ratio test (LRT) was used to 

evaluate the goodness of fit of the GLL 

model relative to its five sub-models. The 

LRT helps determine whether the GLL model 

provides a significantly better fit to the data 

compared to its sub-models, ensuring the 

model's robustness and its ability to 

accurately represent the underlying CO₂ 

emissions data. The results of the LRT further 

supported the effectiveness of the GLL model 

in characterizing the distribution of 

emissions. 

These findings establish the GLL model as a 

powerful tool for accurately tracking and 

analyzing CO₂ emission patterns in Tanzania, 

which is essential for understanding and 

managing rising emission levels. The model 

enhances understanding of emission 

characteristics, helping policymakers 

evaluate the scale and sources of emissions. 

This can inform strategies for transitioning to 

cleaner energy and mitigating environmental 

impacts. Further research could expand the 

use of the GLL model to other pollutants and 

regions, increasing its applicability in various 

environmental settings. 
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