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Abstract 

Geometrical interpretation of higher-order path signatures i.e., of order greater than two can be 

somewhat challenging. The purpose of this paper is to compute the volume of a convex hull 

using the path signature approach, specifically in the context of two-dimensional paths. We 

validate our findings through examples involving both cyclic and non-cyclic curves.  
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Introduction 

In the context of rough paths theory, the path 

signature is a fundamental mathematical tool 

that captures essential information about 

paths. The path signature finds applications in 

various domains, including data science and 

machine learning, where it is used to analyze 

time series data to interpret trends, patterns, 

and relationships over time. It is also utilized 

in human pattern recognition, disease 

diagnosis, and many other areas (Yang et al. 

2022). 

Path signatures are mathematical concepts that 

describe both the geometric and algebraic 

properties of a curve or path. Geometric 

properties of a path include its length, 

curvature, convexity, and symmetry, while 

algebraic properties encompass smoothness, 

parametric equations, and connectivity and 

compactness. 

The concept of the path signature was 

originally introduced by the Chinese 

Mathematician Chen (1958). He defined the 

path signature as a sequence of iterated 

integrals using piecewise continuously 

differentiable paths. Castell and Gaines (1995) 

expanded on the concept of the path signature 

by introducing its application in solving 

control differential equations. Control 

differential equations involve external inputs 

and are typically represented as (𝑥 ′ =
 𝑓(𝑥(𝑡), 𝑡, 𝑢(𝑡)), where 𝑢(𝑡) is referred to as 

the control input. The primary objective of 

control differential equations is to enhance the 

performance and stability (Boedihardjo et al. 

2020). 

Lyons (1998) developed rough path theory 

and applied it to solve control differential 

equations with noise using the path signature. 

In the 2010s, researchers including Lyons and 

Ni (2015), Moore et al. (2019), and others 

made significant contributions to the 

advancement of the path signature’s 

application in data science for analyzing time 

series data. 

Arribas et al. (2018) investigated path 

signature in terms of application by sampling 

signature-based learning method to analyze 

the complex time series data generated by the 

participants' mood ratings. Results indicated 

that the signature methodology successfully 

distinguished between participant groups 

based on self-reported mood, outperforming 

standard approaches with a classification 
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accuracy of 75%.  

Hambly and Lyons (2010) refined Chen's 

theory and derived quantitative results 

applicable to paths of bounded variation. This 

advancement was further extended to 

encompass arbitrary geometric rough paths. 

Algorithms designed to reconstruct paths 𝑋 

from their signature 𝜎(𝑋) have garnered 

significant interest due to their practical 

applications. 

Chevyrev and Kormilitzin (2016) investigated 

the application of the signature method in 

machine learning tasks. They explored how 

the signature approach, as a non-parametric 

technique, could be utilized to extract 

characteristic features from data. By 

converting data into multi-dimensional paths 

using various embedding algorithms, they 

computed individual terms of the signature to 

summarize specific information contained 

within the data. Their research aimed to 

demonstrate the effectiveness of the signature 

method in transforming raw data into a set of 

features suitable for machine learning 

applications. 

Améndola et al. (2023) explore the concept of 

the signature of a parametric curve, which is a 

sequence of tensors composed of iterated 

integrals. This concept is fundamental in the 

theory of rough paths in stochastic analysis. 

Their study, conducted through the 

perspective of algebraic geometry, introduces 

varieties of signature tensors for both 

deterministic and random paths. For 

deterministic paths, the focus lies on 

piecewise linear paths, polynomial paths, and 

varieties derived from free nilpotent Lie 

groups.  

Geometrical interpretation of higher-order 

path signatures remains one of the core 

challenges in computational geometry. In this 

paper, we analyze in detail the technique of 

computing the volume of a convex hull using 

the path signature approach, specifically in the 

context of two-dimensional paths, in 

connection with cyclic and non-cyclic curves, 

and provide some examples. 

 

Materials and Methods 

This study is a pure mathematics study that 

primarily relies on theoretical basis. Some 

tools and methods used include sequences, 

integral operators, determinants of matrices, 

parametric equations of curves, set theory and 

mathematical induction.  

 

Preliminaries 

The following are the definitions, theorems, 

lemmas and propositions which are used in the 

establishment of main results. 

Definition 1.1 (Chevyrev 2015) A path 𝑋 in 

ℝ𝑑is a continuous mapping from some 

interval [𝑎, 𝑏] to ℝ𝑑 

Mathematically written as 𝑋: [𝑎, 𝑏]  → ℝ𝑑  

For this discussion of the path signature, we 

will always assume that paths are piecewise 

continuously differentiable. This means that a 

path which contains derivatives of all orders. 

 

The following is an example of piecewise continuously differentiable path. 

Example 1.2. Let 𝑋(𝑡)  =  (𝑋1(𝑡), 𝑋2(𝑡))  =  (𝑡, 𝑡3) for 𝑡 ∈ [−2,2] on the left panel and 𝑋(𝑡) =

 (𝑋1 (𝑡), 𝑋2 (𝑡)) = (𝑐𝑜𝑠 𝑡, 𝑠𝑖𝑛 𝑡) 𝑓𝑜𝑟 𝑡 ∈ [0,2𝜋] on the right panel. 
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Figure 1: Example of two-dimensional piecewise continuously differentiable paths. 

 

Definition 1.3 (Yang et al. 2022) Let 𝑋: [0, 𝑇]  → ℝ𝑑 be a path such that X(t) = 

(X1(t), X2(t), X3(t), ..., Xd(t)). For each sequence (i1, i2...ik) ∈ dk. The 𝑘-th fold iterated 

integrals of X is given by     

𝑆(𝑖1,𝑖2…𝑖𝑘) = ∫ ∫ …
𝑡𝑘

0

1

0

∫ 𝑋′
𝑡1
(𝑡𝑖)𝑋

′
𝑡2
(𝑡2)

𝑡2

0

, … , 𝑋𝑡𝑘
𝑑𝑡1𝑑𝑡2 …𝑑𝑡𝑘. 

 

The path signature is a collection of all the iterated integrals of X. 

S(X) = (1, S1, S2, S (1,1), S (1,2), ...). 

 

 k is called order or level of path signature.  

 Let consider two-dimensional path X(t) =(X1(t), X2(t)).  

k = 1: S(1)(X), S(2)(X), 

k = 2:  S (1,1) (X), S (1,2) (X), S (2,1) (X), S (2,2) (X), 

k = 3:  S (1,1,1) (X), S (1,1,2) (X), S (1,2,1) (X), S (1,2,2) (X), S (2,1,1) (X), S 

(2,1,2) (X), S (2,2,1) (X), S (2,2,2) (X). 

 For a 2-dimensional path the truncated signature at level 3 consists of 14 terms. 

Example 2.1. (2-Dimensional Path) Consider a path 𝑋: [0, 1]  → ℝ2 with 𝑋1(𝑡)  =
 𝑡 and 𝑋2(𝑡)  =  𝑡2and the derivative 𝑋′1 (t) = 1 and 𝑋′2 (t) = 2t. 

                S (2)(X) =∫ 𝑋′2(𝑡1
1

0
)𝑑𝑡1 = 1, 

                  S (1, 2) (X)= ∫ ∫ 𝑋′1
𝑡2
0

1

0
(𝑡1)𝑋′2(𝑡2)𝑑𝑡1𝑑𝑡2 =

2

3
, 

                  S (2, 2, 2) (X)= ∫ ∫ ∫ 𝑋′
1

𝑡2
0

𝑡3
0

1

0
(𝑡1)𝑋

′
2(𝑡2)𝑋

′
3(𝑡3)𝑑𝑡1𝑑𝑡2𝑑𝑡3 =

1

6
. 

 

Path signature captures geometric properties 

of curves, although their exact 

interpretation for levels larger than two is 

not well understood. 

As the dimension of a path increases, the 

complexity of its signature also grows 

significantly. While a 2-dimensional path 

signature consists of 14 terms, a 3-

dimensional path signature will involve a 

much larger number of terms, making 

computation and geometrical interpretation 

more challenging (Zhou 2019).  

This increase in complexity poses a 

substantial difficultness as we move to 

higher dimensions, emphasizing the need 

for advanced mathematical techniques and 

computational tools to effectively handle 

and analyze such signatures (Boutaib and 

Lyons 2022). 

 

 

Definition 1.4. (Améndola et al. 2023) Let 𝑋: [0, 𝑇]  → ℝ2 be a two-dimensional path 
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such that 𝑋(𝑡)  =  (𝑋1(𝑡), 𝑋2(𝑡)). Alternating signature of two-dimensional path 

denoted as 𝛼(1,2) is linear combination of path signatures. That is,  

𝛼(1,2)  (𝑋) = (𝑆(1,2)   −  𝑆(2,1) ). 

 

Convex Hulls 

Definition 1.5 (Klee 1971) The convex hull of a subset 𝑆 ⊂  ℝ𝑛, denoted as 𝑐𝑜𝑛𝑣(𝑆), 

is defined as the intersection of all convex sets in ℝ𝑛 that contain 𝑆. In other words, 

𝑐𝑜𝑛𝑣(𝑆) is the smallest convex set in ℝ𝑛 that contains all points of 𝑆. 

 

In simple terms, imagine a set of points scattered on a plane. The convex hull is the smallest 

convex polygon that encompasses all of these points. 

 

 
 

 

Figure 2: A point set and its convex hull. 

 

Definition 1.6 (Berger 1990)  

Convexity means that any line segment drawn between any two points on the polygon will 

always lie inside the polygon. 

 

 
Figure 3: Convex polygon and non-convex polygon. 

 

Definition 1.6 (Chalopin et al. 2025) Let 𝑉 denote the volume of the convex hull of a set 𝑋 ⊂
ℝ𝑑 . The volume 𝑉 is defined as the measure of the smallest convex set 𝐶𝑜𝑛𝑣 (𝑋) containing all 

points in 𝑋, where 𝐶𝑜𝑛𝑣 (𝑋) is the convex hull of 𝑋 in ℝ𝑑. 

 

The volume of the convex hull, denoted 𝑉𝑜𝑙 (𝐶𝑜𝑛𝑣(𝑋)), signifies the volume of the space. 

 

Cyclic Curves and Non-cyclic Curves 

Definition 1.6 Let 𝑋: [0, 𝑇]  →  ℝ𝑑  be a path. 𝑋(𝑡) is said to be a piecewise linear 

path if 𝑋(𝑡) =  (𝑥𝑘+1  −  𝑥𝑘)(𝑡 −  𝑘) + 𝑥𝑘 ∀𝑡 ∈  [𝑘, 𝑘 +  1]. 
 

Definition 1.7 (Améndola et al. 2023) Let 𝑖, 𝑗, 𝑘 ∈ {1,2,… , 𝑛}.  A curve is said to be 

cyclic if 𝑑𝑒𝑡 (𝑥𝑗  −  𝑥𝑖 , 𝑥𝑘 −𝑥𝑖  ≥  0 for all 𝑖 ≤ 𝑗 ≤ 𝑘. 
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Figure 4: Example of cyclic curves. 

 

 

In other words, a curve is termed cyclic if the vectors 𝑥1 ,  𝑥2 , 𝑥3. . . 𝑥𝑛 exhibit counter 

clockwise orientation. 

 

Consider illustrative examples of cyclic curves and non-cyclic curves. 

Example 1.7. Consider a rectangle 𝐴𝐵𝐶𝐷 with the following vertices 𝐴(0,0), 
𝐵(2,0), 𝐶(2,4) and 𝐷(0,4). We need to show by using above definition it is cyclic. 

 

 
Consider a path 𝐴𝐵𝐶. Then we formulate a matrix 𝑃 by using the formula above (Definition 

1.7). 

                                                             𝑑𝑒𝑡 (𝑥𝑗   −  𝑥𝑖 , 𝑥𝑘 − 𝑥𝑖)  ≥  0. 

 

For 𝐴𝐵𝐶 we have 𝑥0, 𝑥1 and 𝑥2 apply above definition will be 

                                                             𝑑𝑒𝑡 (𝑥1   −  𝑥0, 𝑥2 − 𝑥0) ≥  0. 
 

Given a 2 × 2 matrix 𝑃 = [
2 2
0 4

], the determinant of  𝑃 is given by: 

                                                        𝑑𝑒𝑡 (𝑃) = 8 − 0 = 8 ≥ 0. 

For 𝐵𝐶𝐷 consider a 2 × 2 matrix 𝑄 = [
2 2
4 4

]. 

For 𝐵𝐶𝐷 we have 𝑥1, 𝑥2 and 𝑥3 apply the above definition will be 

                                                   𝑑𝑒𝑡 (𝑥2   −  𝑥1, 𝑥3 − 𝑥1)  ≥  0. 

 

                                                    𝑄 = [
2 2
4 4

]. 

 

The determinant of the matrix is given by:  
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                                                      𝑑𝑒 𝑡(𝑄) = 8 − 8 = 0 ≥ 0. 
 

Also consider a path 𝐶𝐷𝐴 2 × 2 matrix 𝑅 = [
2 0
4 4

]. 

For 𝐵𝐶𝐷, we have 𝑥2, 𝑥3 and 𝑥4, then apply above definition will be 

                                                       𝑑𝑒𝑡 (𝑥3   −  𝑥2, 𝑥4 − 𝑥2)  ≥  0. 

 

𝑅 = [
2 2
0 4

]. 

 

The determinant of the matrix is given by: 

                                                     𝑑𝑒 t(𝑅) = 8 − 0 = 8 ≥ 0. 

 

Therefore, for all paths 𝐴𝐵𝐶, 𝐵𝐶𝐷, and 𝐶𝐷𝐴, their determinants are greater than or equal to 

zero; hence, the rectangle 𝐴𝐵𝐶 is cyclic. 

 

 
 

Figure 5: Example of non-cyclic curve 

The relationship between path signatures, volume of convex hulls, and cyclic curves of 

2-dimensional path is governed by the following theorem. 

Theorem 1.9. (Améndola et al. 2023) Let 𝑋: [0, 𝑇]  →  ℝ𝑑  be a cyclic curve. Then 

 𝑉𝑜𝑙 (𝐶𝑜𝑛𝑣(𝑥)) = 𝛼(𝑑)(𝑥). 

 

Main Results 

In this section, we present the main results of this paper 

Proposition 2.1 

Let 𝑋: [0, 𝑇]  →  ℝ𝑑  be a linear path. The alternating signature 𝛼(1,2)(𝑋) is given by  

𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ).

𝑘

𝑘=1
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Proof 

Case 1: We consider a 2-dimensional piecewise linear path with two edges. 

 
 

Figure 6: A diagram representing 2D piecewise linear path with two edges. 

 

Let v = x1 − x0 and w = x2 − x0, where v = (v1, v2) and w = (w1.w2). 

From the definition of Alternating signature: 

α (1, 2) (X)=
1

2
∫ ∫ (𝑋′1(𝑡1

𝑡2
0

1

0
)𝑋′

2(𝑡2) − 𝑋′
2(𝑡1)𝑋′1(𝑡2))𝑑𝑡1𝑑𝑡2 , 

                = 
1

  2
∫ 𝑋′1(𝑡2

1

0
)𝑋′

2(𝑡2) − 𝑋′2(𝑡2)𝑋
′
1(𝑡2)𝑑𝑡2.             (1) 

 

Now, let’s define a piecewise linear path 𝑋(𝑡) on [0, 1] 
 

                  𝑋(𝑡) = {
2𝑣𝑡                 𝑖𝑓 𝑡 ∈ [0,

1

2
] ,

2𝑤 (𝑡 −
1

2
) + 𝑣    𝑖𝑓  𝑡 ∈ [

1

2
, 1] .

 

 

Differentiate 𝑋(𝑡) to find 𝑋′(𝑡): 

                        

                  𝑋′(𝑡) = {
2𝑣
2𝑤

  𝑖𝑓    𝑡 ∈ [0,
1

2
] ,

𝑖𝑓 𝑡 ∈ [
1

2
, 1].

 

 

               ∫ 𝑋′
1(𝑡2)𝑋

′
2(𝑡2)𝑑𝑡2

1

0
=∫ 4𝑣1𝑣2𝑡𝑑𝑡 + ∫ (2𝑤1

1
1

2

1

2
0

(𝑡 − 1/2) + 𝑣1)2𝑤2 𝑑𝑡,  

                                                        =
1

2
𝑣1𝑣2 +

3

2
𝑤1𝑤2 + 𝑣1𝑤2.            (2) 

 

              ∫ 𝑋′
2(𝑡2)𝑋

′
2(𝑡1)

1

0
𝑑𝑡2 = ∫ 〖4𝑣2𝑣1𝑡𝑑𝑡 + ∫ (2𝑤2〗 (𝑡 −

1

2
)

1
1

2

+ 𝑣2) 2𝑤1

1

2
0

𝑑𝑡,  

                                                    = −
1

2
𝑣1𝑣2 −

3

2
𝑤1𝑤2 + 𝑣2𝑤1 . 

 
1
 
 2
∫ (〖𝑋′

1(𝑡2〗)𝑋
′
2(𝑡2)

1

0
− 𝑋′

2(𝑡2)𝑋
′
2(𝑡1))𝑑𝑡2 = 

1

2
 𝑣1𝑣2 +

3

2
𝑤1𝑤2 +

1

2
𝑣1𝑤2 − (−

1

2
𝑣1𝑣2 +

                                                                                            
3

2
𝑤1𝑤2 +

1

2
 𝑣2𝑤1), 

                                                                              =
1

2
(𝑣1𝑤2 − 𝑣2𝑤1), 

                                           =  
1

2
 det(𝑣, 𝑤),          

                                                                              =
1

2
det(𝑥1 – 𝑥0 , 𝑥2– 𝑥0).          

 

 

 
x1 

 

 

→ x2 

x0 → x1 



Makwaru et al - A Note on Paths Signatures and Convex Hulls 

454 

 

 
 

 
 

Figure 7: A diagram representing 2D piecewise linear path with three edges. 

Let  

𝑣 = 𝑥1 – 𝑥0, 𝑤 = 𝑥2– 𝑥0 and 𝑧 = 𝑥3 − 𝑥0. 

 

 
Differentiate X(t) to find X′(t): 

 

𝑋′(𝑡) =

{
 
 

 
 3𝑣     𝑖𝑓 𝑡 ∈ [0,

1

3
],   

3𝑤       𝑖𝑓 𝑡 ∈ [
1

3
,
2

3
] ,

3𝑧       𝑖𝑓 𝑡 ∈ [
2

3
, 1] .

 

  

 

Apply the piecewise linear path to integral (1): 

  

  
1

2
 ∫ 𝑋′

1(𝑡2)𝑋
′
2(𝑡2)

1

0
𝑑𝑡2 = ∫ 9𝑣1𝑣2

1

3
0

𝑡2𝑑𝑡 + ∫ (2𝑣1𝑤2

2

3
1

3

+  𝑤1𝑤2)𝑑𝑡 + ∫ (2𝑤1𝑧2 + 𝑧1𝑧2)𝑑𝑡
1
2

3

,  

 = (
1

2
𝑣1𝑣2 +

1

2
(2𝑣1𝑤2 + 𝑤1𝑤2) +

1

2
(2𝑤1𝑧2 + 𝑧1𝑧2) (2) 

 
1

2
∫ 𝑋′

2(𝑡2)𝑋
′
1(𝑡2)𝑑𝑡2

1

0
= 

1

2
𝑣2𝑣1 +

1

2
(2𝑣2𝑤1 + 𝑤2𝑤1) +

1

2
(2𝑤1𝑧2 + 𝑧1𝑧2) (3) 

 

Take equation (2) and subtract equation (3); the result will be: 

Case 2: This is the second case. We consider a 2D piecewise linear path with three 

edges (with four points) 

x3 ← x2 

x1 

 
 

→ x2 

x0 → x1 

Consider the definition of Alternating signature: 

     

                          α (1, 2)=
1

2
∫ ∫ 〖〖(𝑋′〗1(𝑡1〗)𝑋

′
2(𝑡2) − 𝑋′

2〖(𝑡〗1)𝑋
′
1
(𝑡2)) 𝑑𝑡1𝑑𝑡2

𝑡2

0

1

0  

                                                     =
1

  2
∫ 〖𝑋′

1(𝑡2〗)𝑋
′

2(𝑡2)
1

0
− 𝑋′

2(𝑡2)𝑋′(𝑡2)𝑑𝑡2                                        (1) 

 

 

Now, let’s define a piecewise linear path X(t): 

        

       

      𝑋(𝑡) =    

3𝑣𝑡
3𝑤(𝑡 −  1/3)  +  𝑣

              3𝑧(𝑡 −  2/3) +  𝑤

𝑖𝑓 𝑡 ∈  [0, 1/3]

𝑖𝑓 𝑡 ∈  [1/3, 2/3]

𝑖𝑓 𝑡 ∈  [2/3, 1]
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1

2
∫ 𝑋′

1(𝑡2)𝑋
′
2(𝑡2)

1

0
− 𝑋′

2(𝑡2)𝑋
′
1(𝑡2)𝑑𝑡2 =

1

2
〖(𝑣〗1𝑤2 − 𝑣2𝑤1) +

1

2
𝑤1𝑧2 − 𝑤2𝑧1. 

 

 

       𝛼(1,2)(𝑋) =
1

2
(𝑣1𝑤2 − 𝑣2𝑤1) +

1

2
(𝑤1𝑧2 − 𝑤2𝑧1). 

                        =
1

2
𝑑𝑒 𝑡(𝑣, 𝑤) +

1

2
𝑑𝑒 𝑡(𝑤, 𝑧). 

                        =
1

2
[det(𝑥1  –  𝑥0 , 𝑥2– 𝑥0 ) + det(𝑥2  –  𝑥0 , 𝑥3– 𝑥0 ) +

det(𝑥3  –  𝑥0 , 𝑥4– 𝑥0  )]. 
 

By induction we can generalize for 𝑛 edges. 

 

𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘   –  𝑥0 , 𝑥𝑘+1– 𝑥0 )

𝑘−1

𝑘=1

. 

 

 
For 2 edges, consider a piecewise linear path with three points: x0, x1, x2.  The path 

signature α (1, 2) (X) is given by: 

  

α (1, 2) (X)   =  
1

2
 det(𝑥1 – 𝑥0, 𝑥2– 𝑥0). 

 

This serves as our base case for n = 2. 

Inductive Hypothesis (Assume true for 𝑛 =  𝑘): 
Let’s assume that for n = k edges, the path signature can be represented as: 

α (1, 2) (X)=
1

2
∑ 𝑑𝑒𝑡 (𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 )

𝑘−1
𝑘=1 . 

 

Inductive Step (Prove for 𝑛 =  𝑘 +  1): 

Now, we want to prove that for 𝑛 =  𝑘 +  1 edges, the path signature can be represented 

as: 

 

𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ).

𝑘

𝑘=1

 

 

Consider a piecewise linear path with 𝑘 + 1 edges and 𝑘 + 2 points: 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘+1. 

We can break down this path into two parts: the first 𝑘 edges (from 𝑥0 to 𝑥𝑘+1) and the 𝑘-

th edge to (𝑘 +  1)-th edge (from 𝑥𝑘 to 𝑥𝑘+1). 

 

By the inductive hypothesis, the path signature for the first k edges is: 

𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ).

𝑘−1

𝑘=1

 

 

Now, let’s consider the 𝑘-th edge to (𝑘 +  1)-th edge: 

 
1

2
∫ 𝑋1(𝑡𝑘+1)𝑋

′
2(𝑡𝑘+1)

1

0

− 𝑋2(𝑡𝑘+1)𝑋
′
1(𝑡𝑘+1)𝑑𝑡𝑘+1. 

 

Proof: 

Base Case (n=2): 
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We can expand this using the same formula we derived for 2 edges: 

 

  
1

2
 ∫ 𝑋1(𝑡𝑘+1)𝑋

′
2(𝑡𝑘+1)

1

0
− 𝑋2(𝑡𝑘+1)𝑋

′
1(𝑡𝑘+1)𝑑𝑡𝑘+1 =

1

2
det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ). 

 

Now, by adding this to the path signature for the first k edges, we obtain the path signature 

for 𝑛 =  𝑘 + 1 edges: 

 

𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 )

𝑘−1

𝑘=1

+
1

2
det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ). 

 

Simplifying the expression: 

                  𝛼(1,2)(𝑋) =
1

2
∑ det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 )

𝑘
𝑘=1 . 

 

This completes the inductive step. Thus, we have proven that the path signature for  

𝑛 =  𝑘 +  1 edges can be represented as: 

 

                 𝛼(1,2)(𝑋) =
1

2
∑ det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 )

𝑘
𝑘=1 . 

 

By induction, this holds for all positive integers 𝑛, and we have successfully generalized the 

path signature for 𝑛 edges using sigma notation. 

 

Verification of the results 

In this subsection, we discuss the verification of the proposition mentioned above 2.1, which 

was obtained in this project. 

Consider a rectangle ABCD with the following vertices 𝐴(0, 0), 𝐵(2, 0), 𝐶(2, 4) 

and 𝐷(0, 4). This rectangle is cyclic since 𝑑𝑒𝑡 (𝑥𝑗   −  𝑥𝑖 , 𝑥𝑘 − 𝑥𝑖)  ≥  0 for all 𝑖 ≤ 𝑗 ≤

 𝑘. 

 

 
 

Since rectangle 𝐴𝐵𝐶𝐷 is cyclic, we can apply the formula of path signature: 

Now, let’s consider the coordinates of the vertices: 

 

𝑥0  = 𝐴(0,0). 𝑥1  =  𝐵(2, 0). 𝑥2  =  𝐶(2,4). 𝑥3  =  𝐷(0, 4). 
We have four coordinate points (four vertices), so n = 4. The path signature of these 

four vertices will be computed as: 

            𝛼(1,2)(𝑋) =
1

2
∑det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 )

𝑘−1

𝑘=1

+
1

2
det(𝑥𝑘  – 𝑥0, 𝑥𝑘+1– 𝑥0 ). 

 

          Given a 2 × 2 matrix: 𝑃 = [
2 2
0 4

] and 𝑑𝑒𝑡 (𝑃) = 8. 
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     Given a 2 × 2 matrix: 𝑄 = [
2 2
4 4

] and 𝑑𝑒𝑡 (𝑄) = 0. 

    Given a 2 × 2 matrix: 𝑅 = [
2 0
4 4

] and 𝑑𝑒𝑡 (𝑅) = 8. 

To calculate the 2D volume of the convex hull, we can equate it to the area enclosed by the 

rectangle ABCD which is 8 square units 

 

Relation to Convex Hull: 

Therefore, we can establish a relationship between the 2D volume of the convex hull  

𝑉𝑜𝑙(𝑐𝑜𝑛𝑣(𝑥)) and the area of the rectangle: 

𝛼(1,2)(𝑥) = 𝑉𝑜𝑙 (𝐶𝑜𝑛𝑣(𝑥)). 

This equation illustrates that the 2D volume of the convex hull is equivalent to the 

area of the rectangle ABCD. 

 

Conclusion 

This section provides a comprehensive overview of the outcomes achieved through this 

project. 

 

A first level signature of path is always the total displacement of path i.e. path   

increment. Path increment = 𝑋𝑇  −  𝑋0. 

The second level of path signature contains information about the area enclosed (signed 

area). 

 

If a path 𝛼 is cyclic 𝛼(1,2)(𝑋) = (𝑆(1,2)(𝑋) − 𝑆(2,1) (𝑋)) =Area enclosed 

In 2D area enclosed is a volume of convex hull. 

 

Therefore, if a path 𝑋 is cyclic the alternating signature is equal to volume of convex 

hull which is area in 2D i.e. 𝛼𝑑(𝑥)  =  𝑉𝑜𝑙 (𝐶𝑜𝑛𝑣(𝑥)).  

 
 

Figue 8: Example of signed area of a curve 
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