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This paper proposes a simple adaptive recursive terminal sliding mode control
approach  for  industrial  feed  drive  systems.  The  design  employs  a  recursive
sliding mode structure that eliminates the reaching phase and ensures finite-time
convergence  of  the  tracking  error.  To  mitigate  chattering,  a  second-order
nonsingular terminal sliding mode is used and the parameters to compensate for
disturbances are obtain in terms of integral form and a proportional terminal
term, which enhances disturbance rejection and further guarantees finite-time
convergence. The proposed controller significantly reduces the tracking error
and  saves  energy  for  the  feed  drive  system.  Numerical  simulations  on  an
industrial feed drive system confirm the controller’s superior performance in
terms of  fast  convergence,  contour error  reduction,  and lower energy usage,
especially when compared to a configuration lacking the proportional terminal
term. The impact of this work lies in providing a robust and energy-efficient
control  approach  that  enhances  both  precision  and  energy  performance  in
modern industrial motion systems under disturbances.

Introduction
In  the  modern  manufacturing  and

production, feed drive systems are among the
vital  components  owing  in  moving
worktables or tools with precision, speed and
force  for  different  purposes  (Altintas  et  al.
2011,  Halinga  et  al.  2023,  Msukwa  and
Santos  2021, Nshama et  al.  2021, Nyobuya
and  Uchiyama  2024).  Due  to tighter
tolerances and higher accuracy, the need for
accurate motion control becomes even more
significant.  However,  tracking  performance
not  only  contributes  to  product  quality  but
also leads has an impact on the energy usage.
Furthermore,  since feed drive systems often
operate continuously around the clock, they

tend  to  consume  a  significant  amount  of
energy. Hence, it’s vital to propose such ways
on which  the  low energy  consumption  and
high tracking accuracy can be obtained. The
most common approach used in the industries
for  feed  drive  systems  is  the  Proportional-
Derivative controller with knowledge of the
dynamics and error dynamics an approach is
developed  to  control  the  feed  drives.
However,  PD  controller  is  limited,  as
elaborated  in  (Zhang  and  Mohammadzadeh
2025,  Msukwa  et  al.  2020),  the  overall
control performance of the systems tends to
depend  on  the  oscillations,  external
disturbances, and un-modeled uncertainties. 

In recent years, control approaches which
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are non-linear are proposed to meet the high
accuracy and low energy consumption, such
approaches  including  model  predictive
control  by  Leipe  et  al.  (2023),  model-
reference  adaptive  control  by  Gai  et  al.
(2021),  robust  control  by  Xu et  al.  (2024),
and sliding mode control by Wei et al. (2025)
have  been  applied  to  control  the  industrial
feed  drives  at  different  aspects  and achieve
high-performance. 

It’s  worth  mentioning  there  are  other
intelligent techniques also used to control the
feed drives systems including Fuzzy control
by  Yu  et  al.  (2023)  and  Neural  Network-
Based  control  by  Zamfirache  et  al.  (2023).
Overall,  these  techniques  can  produce
relative  high  control  performance  but  their
architectures,  processes  and  computation
effort  make  them  unfeasible  for  real-life
applications. 

Sliding mode control (SMC) is one of the
among the non-linear control approach, offers
robustness  and  disturbance  rejection  this
enables  high  tracking  performances  to  the
feed  drive  system  to  be  improved.  The
primary advantage for SMC lies in its ability
to be insensitive to un-modeled uncertainties
and  external  disturbances,  maintain  the
designed  sliding  surface  state  at  all  times
including from the initial state (Gambhire et
al.  2021).  Sliding  mode  structure  have  two
parts  which  are  the  equivalent  control  and
discontinuous control, the equivalent control
ensures  that  dynamics  stay  in  the  sliding
surface and the discontinuous part forces the
trajectories  to  the  sliding  surface  upon
existence  of  disturbances  and  other  un-
modeled dynamics. SMC is of linear nature
for  which  upon  control  application  it  only
converges  asymptotic  and  cannot  attain
finite-time convergence. To attain finite-time
convergence,  Wu  et  al.  (1998)  propose
terminal sliding mode (TSM) which modifies
the  sliding  surface  with  nonlinear  terms
which forces all the trajectories to the sliding
surface to converge to equilibrium in finite-
time. 

Due  to  singularity  problems  of  TSM
structure, Feng et al. (2002) proposed a non-
singular  TSM control  for  which the control
architecture  attains  finite-time  without

singularity  problems.  As  the  result  of  this
advancement, the following researches were
inspired,  including  continuous  adaptive  fast
terminal sliding mode-based speed regulation
control  proposed  by  Chen  et  al.  (2023),  a
fuzzy adaptive PID with fast terminal sliding
mode  controller proposed  by  Zhong  et  al.
(2021)  for  a  redundant  variable  load.
Continuous  approximation  helps  eliminate
chattering,  while  fuzzy  logic  estimates
system  error  and  disturbance  bounds.  The
modifications  on  these  designs  make  the
sliding  surface  design  that  accelerate  the
system’s  response  and good performance  is
obtained. 

For  continuity  and  the  elimination  of
chattering,  continuous  non-singular  TSM
control is proposed by Yu et al. (2005). Chiu
(2012) proposed the integral terminal sliding
mode for  systems with a  relative  degree  of
one, effectively removing the reaching phase
to  the  nonlinear  sliding  surface  and
guaranteeing finite-time convergence of both
tracking and integral errors.

In practice,  disturbances play a significant
role on disrupting the accuracy and increase
energy consumption while operating the feed
drive  system.  Therefore,  it  is  inevitable  to
design a controller which is can deal with the
disturbances  effectively.  The  primary
objective  of  this  paper  is  to  improve  the
tracking  performance  by  explicitly
considering  the  external  disturbances.
However,  the  discontinuous  or  switching
operation is governed by sign function which
forces the control architecture into chattering
mode. This drawback may cause a relentless
damage  to  the  mechanical  structure  or
unstable. 

Different  ways  exist  to  deal  with  this
problem,  including  the  boundary  layer
approach (Razzaghian et al. 2022, Dong et al.
2021) where the continuous approximation of
signum function is performed by introducing
a  small  boundary  for  which  replaces  the
signum function with saturation more details
are explained by Saha et al. (2021). However,
the  boundary  layer  approach  is  that  the
sliding  mode  loses  the  robustness  against
uncertainties when the sliding surface reaches
inside  the  boundary  layer  (Slotine  and  Li
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1991, Boiko  2013). 
Another approach for reducing chattering in

the  control  architecture  is  by  using  a
disturbance  observer  with  sliding  mode
control.  By  predicting  the  designed  model
uncertainties, the controller compensates the
uncertainties  without  relying  on  strong
switching  signals  (Önen  2023,  Zuo  et  al.
2023).  However,  this  method  acquires  an
unrealistic  magnitude  of  control  input  to
estimate  the  disturbance.  In  addition,  the
disturbance observer in the system increases
the order  of the system and, thus,  increases
the computational complexity (Vo and Kang
2019). 

Higher-order SMC (HOSMC) (Utkin 2015,
Shtessel et al. 2023, Oliveira et al. 2022) is
known approach that alleviates the chattering
to a great extent without compromising with
the  precision  of  the  controlled  system
performance. The high frequency component
of  discontinuous  control  is  applied  into
higher order derivative of sliding surface. 

In addition, the chattering component in the
actual  control  input  gets  attenuated
substantially. As a result, the high frequency
input  cannot  be  propagated  into  the  sliding
surface  of  the  system.  More  forms  of
HOSMC  approaches  have  been  explored
including (Sun et al. 2022, Deng et al. 2020),
and references therein. 

Deng  et  al.  (2020)  proposed  an  adaptive
recursive  terminal  second-order  SMC  is
proposed  for  which  the  reaching  phase  is
eliminated and the finite-time convergence of
the  tracking  error  to  zero  is  ensured  as
compared  to  ISMC.  Furthermore,  second
order  non-singular  terminal  sliding mode is
used for which the reaching control input is
achieved  in  an integral  form of  the  signum
function  which  can  effectively  suppress
chattering. 

In this paper, motivated by the principles of
high-order  sliding mode (HOSM) control,  a
simple  adaptive  recursive  terminal  sliding
mode  control  method  is  proposed  for  the
industrial feed drive system. 

First, the dynamic model of the feed drive
system  with  un-modeled  uncertainties  and
external  disturbance  is  presented.  Second,
based  on  the  concept  of  non-singular  TSM
control  and  ITSMC,  the  controller  is
constructed  based  on  a  recursive  nature.
Moreover,  the  adaptive  parameters  in  the
switching  or  discontinuous  control  are
designed on terms of integral  term which is
typically used and proportional terminal term
with  is  proposed.  The  integral  term
contributes  negative  feedback  that  prevents
error  growth in  the  Lyapunov  framework,
thereby guaranteeing overall system stability.
Furthermore, by feeding the integrated error
back  into  the  control  input,  the  controller
ensures  that  even  small  but  persistent
deviations  are  driven  to  zero.  The
proportional terminal term further suppresses
the tracking error and reduces the finite-time
convergence  with  Lyapunov  stability
guarantee. 

This  concept  is  based  on  simple  adaptive
control  theory  explained by Kaufman et  al.
(2012) for  which the adaptation is achieved
and in  turn  reduces  the  tracking  errors  and
lower the energy consumption. 

The  remaining  paper  is  organized  as
follows:  the  next  section  presents  the  feed
drive  dynamics  along  with  the  energy
consumption  model,  followed  by  the
controller  design and stability analysis.  The
subsequent  section  after,  presents  the
numerical simulation and results, followed by
discussion  of  the  results.  Finally,  the  paper
concludes with final remarks of the findings.

Table 1: The list of symbols and notations used in this paper
Symbol Description

i Index of the axis ( i=1,2 )
q i Position of the feed drive axis

qd i Reference position of the axis

e i Tracking error
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mi Mass parameter of the axis

m0 i Nominal (estimated) mass

∆ mi Mass uncertainty

c i Viscous friction coefficient

c0 i Nominal viscous friction coefficient

∆ ci Uncertainty in viscous friction

Li Coulomb friction force

L0 i Nominal Coulomb friction

∆ Li Uncertainty in Coulomb friction

d i External disturbance

τ i Control input torque/force applied to axis

ρi Lumped uncertainty and disturbance term

a ji Unknown positive constants bounding ρ̇i,
j=0,1,2,3

σ i Non-singular terminal sliding surface

λ1i, λ2i Positive control gains in terminal sliding surface

γ1 i , γ2 i Nonlinear exponents in terminal sliding surface

sig ( x ) y=|x|y sgn ( x )Signum power function

si Recursive integral terminal sliding surface

σ iI Integral sliding variable

ν1 i , ν2 i Positive odd integers for integral sliding dynamics

τ eqi Equivalent control input

τ swi Switching (discontinuous) control input

â ji Estimated adaptive gains, j=0,1,2,3
â jIi Integral adaptive gains

â jpi Proportional adaptive gains

η jI i, η jpi Positive adaptation rate constants

β i=β1 i /β2 i Ratio of odd integers for proportional adaptive law

V i Lyapunov candidate function

μ ji Positive weighting constants in Lyapunov function
~a ji Estimation error for adaptive parameters

σ si Lumped disturbance margin term

σ ji Terms associated with adaptive error stability

σ pi Positive term for proportional adaptive convergence

Γ1 i, Γ2 i Positive constants ensuring finite-time stability

t vi, t si, t ci Convergence times for Lyapunov function, sliding 
variable, and tracking error respectively
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Feed Drive System Dynamics
The dynamics of the feed drive systems are of many configurations, a typical biaxial setup,

also referred to as X-Y table with 2 axes, is considered in this paper represented as format as
follows:

mi q̈i+c i q̇i+Li sgn (q̇ i )+d i=τ i , i (1,2 ) (1 )
whereas  mi,  c i,  and  Li corresponds to the mass, viscous friction coefficient,  and Coulomb
friction force for each individual drive axis i. The control input applied to each axis is denoted
by τ i, while d i, and q i are the external disturbance and position of each drive axis. Given that
the drive axes are actuated by servo motors mechanically coupled to the system, their dynamic
characteristics are included in the system formulation. It is assumed that feed drive system
posses the following uncertainties:

mi=m0 i+∆ mi , ci=c0 i+∆ c i , Li=L0 i+∆ Li , (2 )
where m0 i,  c0 i, and L0 i are estimated terms and ∆ mi,  ∆ ci, and ∆ Li are uncertainty terms.
Then, the dynamic equation of the feed drive system can be written as

m0 i q̈i+c0 i q̇i+L0 i sgn (q̇ i )=τ i+ ρi (3 )
with 

ρi=− ∆ mi q̈i −∆ ci q̇i − ∆ Li− di (4 )
From (3)-(4), it’s obvious that  ρi is linearly affected byq i,q̇ i, and q̈ i. The derivative of ρi can
reasonably be assumed to be bounded by

1
m0i

|ρ̇i|<a0 i+a1 i|qi|+a2i|q̇ i|+a3 i|q̈ i|, (5 )

where  a ji,  ( j=0,1,2,3 ) are positive numbers that tend to exists but unknown. Such bounds
are  commonly  employed  in  control  theory  to  ensure  system  stability  or  to  design  robust
controllers when exact parameter values are unknown but assumed to exist such as (Deng et al.
2020).

Control Design 
The control  objective is  to design a controller  to achieve  precise,  energy-saving and fast

tracking performance of the feed drive system in the existence of system uncertainties. The
positional tracking error of the system as follows:

e i=qdi − qi , (6 )
where qdiis the reference position. From (3), the error dynamics can be written as

ë i=q̈di −
1

m0 i
{τ i− c0 i q̇i− L0 i sgn (q̇ i) − ρi }, (7 )

The objective for the feed-drive system to follow the reference trajectory command fast and
precise  under  un-modeled  uncertainties  and  external  disturbances.  In  order  to  achieve  this
objective, a recursive integral terminal sliding mode control is developed, which guarantees
finite-time convergence of the tracking error to the origin and eliminates the reaching phase
commonly present in traditional sliding mode control. The controller design begins by defining
the nonsingular terminal sliding function σ i as follows:

σ i=ë i+ λ2 i sig ( ėi )
γ2 i+ λ1 i sig ( ei )

γ1 i , (8 )
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where the parameters λ1i, λ2i are selected such that the polynomial, which corresponds to the
system (6), is Hurwitz. Besides, γ1 i, γ2 i are selected to satisfy

{ γ1 i∈ (0,1 )

γ 2i=
2 γ 1i

1+γ1 i

(9 )

The  shorthand  notation  sig ( x ) y  originally  proposed  by  Haimo  (1986)  is  a  simplified
expression given as

sig ( x ) y=|x|y sgn ( x ) (10 )
where  sgn ( x ) is  the  signum function.  As for  all  x∈ R and  y>0,  the function  sig ( x ) y

remains smooth and strictly monotonically increasing, and always returns a real-valued output.
Importantly, Feng et al. (2014) established that when the sliding function σ i=0  in equation
(8), the tracking error  e i converges to the origin in finite-time. A recursive terminal sliding
function si as follows:

si=σ i+λi σ iI (11 )
where σ i is with (8), λ i>0 and σ iI is designed in the following form:

σ̇ iI=|σ i|
ν1i /ν2 isgn ( σ i ) (12 )

where the parameter ν1 i and ν2i are odd positive constants such way are selected ν1 i<ν2i to
ensure  no  singularity  occurs.  Equation  (12)  is  free  of  singularities  because  the  term

|σ i|
ν1i / ν2 i sgn (σ i ) remains  finite  for  all  σ i,  and  evaluates  to  zero  at  σ i=0.  The  condition

ν1 i<ν2i ensures that the fractional  power exponent lies in  (0, 1), avoiding any division by
zero. In addition, this property enables finite-time convergence rather than causing a blow-up.
To eliminate the reaching phase the initial integral value of σ Ii in (9) is set as

σ Ii (0 )=− λi
− 1σ i (0 ) (13 )

It can be shown from equations (12) and (13), the initial sliding variable  si (0 )=0 , which
implies that the control system is enforced to start on the sliding surface at the initial time such
that the reaching time is eliminated. Given the initial states of the system are available in most
practical settings, σ Ii (0 ) can be determined as follows:

σ Ii (0 )=− λi
− 1 ( ë i (0 )+ λ2 i sig ( ėi (0 ) )γ2+λ1 i sig ( ei (0 ) )γ1 ) (14 )

When si=0 holds in (9), the sliding variable σ i converges to zero in a finite time t si given by

t si=
|σ i (0 )|

ν1 i

ν2 i

λi(1 −
ν1 i

ν2 i )
(15 )

The final structure of the proposed controller is derived using the recursive integral double
terminal sliding function. Its explicit form is given as follows:

τ i=τeqi+τ swi , (16 )
where τ eqi and τ swi are the equivalent control input and the reaching control input which will
be  designed,  respectively.  By  using  (3),  (8)  and  (16)  and  letting  ṡi=0,  with  ρi=0,  the
following equivalent control input is obtained given as 
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τ eqi=mi0 ( q̈id+ λ2 i sig ( ėi )
γ2 i+ λ1 i sig ( ei )

γ1 i+ λi σ Ii)+c i q̇i+Li sgn (q̇ i ) . (17 )
Moreover, an integral-based control input is designed as

τ swi=mi 0∫
0

t

( â0 i+â1i|q i|+â2 i|q̇ i|+ â3 i|q̈i|) sgn ( si ) dt (18 )

where the control parameters â ji,( j=0,1,2,3 ) are updated using proposed below summation 
of integral and proportional terms, the following integral adaptive laws given by

˙̂a0 Ii=η0 Ii
−1|si|(19 )

˙̂a1 Ii=η1 Ii
−1|qi||si|(20 )

˙̂a2 Ii=η2 Ii
−1|q̇i||si|(21 )

˙̂a3 Ii=η3 Ii
−1|q̈ i||si|(22 )

to increase convergence and error suppression, proportional adaptive term with terminal 
attractor is proposed as

â0 pi=η0 pi
−1 |si|

βi (23 )
â1 pi=η1pi

−1 |q i||s i|
β i (24 )

â2pi=η2 pi
−1 |q̇ i||s i|

β i (25 )
â3 pi=η3 pi

−1 |q̈ i||s i|
βi (26 )

and finally 
â0=â0 p+ â0 I (27 )
â1=â1 p+â1 I (28 )
â2=â2 p+â2 I (29 )
â3=â3 p+ â3 I (30 )

with η jpi>0 , η jIi>0, â jIi ( 0 )≥ 0, and â jpi (0 ) ≥ 0, ( j=0,1,2,3 ). β i=
β1i

β2i
 

are positive constants, and β1 i and β2 iare two odd positive integers with β1 i< β2 i. the integral
terms gain given in (19 - 22) are used to guarantee convergence of the system to the estimated
values, the proportional terms (23 - 26) adds immediate penalty for large errors with terminal
attractor and leads the system very quickly toward small tracking errors and reduces the finite-
time convergence.
Stability Analysis 

The  proposed  controller  stability  analysis  is  provided  as  follows.  From (8)  and  (9),  the
derivative of the integral terminal sliding function si becomes

ṡi= σ̇ i+λi σ̇ Ii , (31 )
the error dynamics are given as

ṡi= e⃛i+λ2i γ 2 i|ėi|
γ2 i− 1 ë i+λ1 i γ1 i|e|

γ 2i −1 ė i+ λi σ̇ Ii , (32 )
using the dynamics with uncertain in (3) and the proposed  τ eqi in (17) the dynamics by integral
configuration the following is obtained

ṡi=
d
dt ( q̈id −mi

−1 {τ i− c i q̇ i− Li sgn( q̇i ) − ρi })+ λ2 i γ2 i|ėi|
γ2 i −1 ëi+λ1i γ 1i|e|

γ2 −1 ė+ λi σ̇ Ii , (33 )

ṡi=− mi
−1 d

dt ( τ̇ swi+ ρ̇i ) , (34 )

558



Tanz. J. Sci. Vol 51(3) 2025

Next, the Lyapunov candidate is selected as

V i=
1
2

si
2+ 1

2∑i=0

3

μ ji
~a ji

2 , (35 )

where  μ ji>0 ,  ~a ji=â ji − a ji,  ( j=0,1,2,3 ). Solving the derivative of (35) along the system
trajectories yields

V̇ i=si ṡi+∑
j=0

3

μ ji
~a ji

~̇a ji , (36 )

Using the dynamics of (34) into (36) it becomes

V̇ i=− si mi
−1 ( τ̇ swi+ ρ̇i )+∑

j=0

3

μ ji
~a ji

~̇a ji , (37 )

V̇ i=− s i ( ( â0 i+ â1 i|qi|+ â2 i|q̇i|+â3i|q̈ i|)sgn ( s i )+ ρ̇i )+∑
j=0

3

μ ji
~a ji

~̇a ji , (38 )

Introducing the addition and subtraction of (a0 i+a1 i|qi|+a2 i|q̇i|+a3 i|q̈i|)|si| ,  ??becomes

+(a0 i+a1 i|q i|+a2 i|q̇i|+a3 i|q̈i|)|si|, (39 )
~a ji=â jIi− a ji and ~̇a ji= ˙̂a jIi, ( j=0,1,2,3 ) further more â ji=â jpi+ â jIi and 

+(a0 i+a1 i|q i|+a2 i|q̇i|+a3 i|q̈i|)|si|, (40 )

+(a0 i+a1 i|q i|+a2 i|q̇i|+a3 i|q̈i|)|si|. (41 )
Now apply this equations (19) – (22) it becomes
??≤ − ( â0 pi+ â1 pi|qi|+â2 pi|q̇ i|+ â3 pi|q̈i|)|s i|− (~a0i+~a1 i|q i|+~a2i|q̇ i|+~a3 i|q̈i|)|s i|

Suppose â0 Ii ≤ ai and substituting equations (23) – (26)

≤ − (η0 pi
−1 +η1 pi

−1 |q i|
2
+η2 pi

−1 |q̇i|
2
+η3 pi

− 1|q̈i|
2 )|s i|

β i+1

− ( μ0 i η0 Ii
−1 −1)|~a0 i||si|− (μ1 i η1 Ii

−1 −1 )|qi||~a1 i||si|
− ( μ2 iη2 Ii

− 1− 1 )|q̇ i||~a2 i||s i|− (μ3 i η3 Ii
−1 −1 )|q̈i||~a3i||si|

− (a0 i+a1i|q i|+a2 i|q̇ i|+a3 i|q̈i|− mi
− 1|ρ̇i|)|s i|, (43 )

by defining the following symbols
σ si=a0i+a1i|q i|+a2 i|q̇ i|+a3 i|q̈i|− mi

− 1|ρ̇i|, (44 )
σ ji=(μ ji η jIi

− 1− 1)|qi
( j )||si|, (45 )

σ pi=η0 pi
−1 +η1 pi

−1 |q i|
2+η2 pi

−1 |q̇i|
2+η3 pi

− 1|q̈i|
2 , (46 )
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≤ − (( â0 pi+â0 Ii )+(â1pi+â1 Ii )|q i|+ (â2 pi+â2 Ii )|q̇i|+( â3 pi+ â3 Ii )|q̈i|)|si|+mi
− 1|ρ̇i||s i|+μ0 i

~a0 i
˙̂a0 Ii+μ1 i

~a1 i
˙̂a1 Ii+μ2 i

~a2 iη2 Ii
−1|q̇i||si|+μ3i

~a3 i
˙̂a3 Ii− (a0 i+a1 i|qi|+a2i|q̇ i|+a3 i|q̈ i|)|si|

+mi
−1|ρ̇i||si|+μ0i

~a0 i η0 Ii
− 1|si|+μ1 i

~a1i η1 Ii
−1|q i||si|+μ2 i

~a2 iη2 Ii
− 1|q̇i||si|+μ3 i

~a3 i η3 Ii
−1|q̈ i||si|− (a0 i+a1 i|qi|+a2 i|q̇ i|+a3i|q̈ i|)|si|, (42 )

? ? ≤− (â0i+ â1 i|q i|+â2i|q̇ i|+ â3 i|q̈i|)|s i|+mi
−1|ρ̇i||si|+∑

j=0

3

μ ji
~a ji

~̇a ji − (a0 i+a1i|q i|+a2 i|q̇i|+a3 i|q̈i|)|si|

≤ − ( â0 i+â1 i|qi|+ â2 i|q̇i|+â3 i|q̈ i|)|si|+mi
−1|ρ̇i||si|+μ0i

~a0i
˙̂a0 Ii+μ1 i

~a1 i
˙̂a1 Ii+μ2 i

~a2 iη2 Ii
− 1|q̇i||si|+μ3 i

~a3 i
˙̂a3 Ii − (a0 i+a1i|q i|+a2 i|q̇i|+a3 i|q̈i|)|si|
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where i=0,1,2,3. Then, if σ si , σ ji , σ pi>0, (43) can be rewritten as

V̇ ≤− σ si|si|−∑
j=0

3

σ ji|~a ji|− σ pi|si|
βi +1 ( 47 )

≤ −σ si√2
|si|
√2

−∑
j=0

3

σ ji√ 2
μ ji √ μ ji

2 |~a ji|− σ pi|si|
βi+1 (48 )

≤ −(|si|
√2

+∑
j=0

3

σ ji√ μ ji

2 |~a ji|)min {σ si √2 , σ ji√ 2
μ ji }− σ pi|si|

βi +1 ( 49 )

≤ − Γ1 i V i
1 /2 − Γ 2i V i

( βi+1 )/2 (50 )
where Γ1 i, Γ2 i are positive constants satisfying: 

Γ1 i ≤min {σ si√2, σ ji√ 2
μ ji

}, Γ 2i=σ pi 2
( βi+1 )/2 , (51 )

It is evident that  σ si>0, and for any values  η jpi
− 1 , η jIi

− 1 , ( j=0,1,2,3 ) , there exists suitable
constants  μ ji , a ji such that  σ ji>0,  and  Γ1 i , Γ 2 i>0.  For that  instance, the inequality (50)
satisfies the finite-time stability condition. More specifically, V  will converge to zero in finite-
time from condition V i (0 ), and the convergence of the time satisfies

t vi ≤
2V i

1/2 (0 )
Γ1 i

+
2V i

(1 − β i)/2 (0 )
( β i− 1 ) Γ 2i

. (52 )

It follows that the sliding variable si and the
estimation error ~a i will both diminish to zero
in  finite  time.  Once  si becomes  zero,  the
quantities  σ i and  e i will  sequentially
converge to zero over their respective finite
intervals  t si and  t σi.  Consequently,  the
tracking error  e i will vanish in a finite time
t ci=t vi+t si+t σi,  regardless  of  the  initial
condition. This completes the proof. 
Selecting Control Parameters

When  implementing  the  controller,  it's
necessary  to  balance  the trade-offs  between
signal  smoothness,  power  consumption, and
measurement  noise.  The  control  parameters
selection  guideline  for  the  proposed
controller is as follows.

1) Values  of  λ1i,  λ2i,  γ1 i and  γ2 i in  the
terminal  sliding  surface  enhance  the
convergence rate of the tracking error e i
to zero, so are selected large. However,
large  values  result  in  a  larger  control

input, which can increase chattering and
energy  consumption.  Ultimately,  the
selection  of  these  parameters  should
consider system dynamics and actuator
limitations.

2) The  parameter  λ1 , λ2>0 is  chosen  to
balance the rate of convergence and the
magnitude  of  the  control  input;  larger
values  improve  convergence  but  may
increase  control  effort  and  chattering.
The exponents ν1 i and ν2i  are selected
as  odd  positive  integers  such  that
ν2i<ν1i,  which  ensures  finite-time
convergence of the integral  term while
avoiding singularity at σ i=0.

3) Choosing  small  values  for η jpi ,  η jIi,
( j=1,2,3,4 ) enables  faster  estimation
of the control gain, as shown in (19) –
(26).  However,  it  may  cause
overestimation  or  even  lead  to  control
input saturation of the servo drive. 
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Figure 1: Butterfly reference trajectory 

Figure 2: Proposed approach schematic

Simulation 
To  validate  the  effectiveness  of  the

proposed  method  as  shown  in  Figure  2,

simulation  is  conducted  based  on  Butterfly
reference  trajectories  in  Figure  1  for  both
axes. From Figure 2 upon removing the red
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block it becomes the conventional approach
of SO-RTSM from Deng et al.  (2020).  The
butterfly trajectory poses challenges because
of its sharp curvatures and frequent changes
in  direction,  which  demand  high  controller
precision  with  fast  dynamic  response.  In
addition,  its  abrupt  segments  make  it  more
difficult  to  track  accurately  compared  to
standard test paths like circles or lemniscates.
The  nonlinear  second  order  plant  in  (3)  is
considered  as  the  real  system.  External
disturbances  fused  with  the  states  given  as
ρi=300+100 qi+100 q̇i+100 q̈ i N  for

both  axes  are applied  to  evaluate  the
performance  in  presence  of  matched
uncertainty.  The  other  plant  and  controller
parameters  are  given  in  Tables  2  and  3
respectively. Only by  â0 I , â1 I , â2 I , and â3 I
in Table 3 is a used for the controller design
from Deng et al. (2020) also defined as SO-
RTSM and  for  the  proposed  â0 I , â1 I , â2 I ,
and â3 I are added with proportional terminal
gains  â0 p , â1 p , â2 p , and  â3 p to  increase
disturbance suppression.

Table 2: Dynamic parameters

ith axis m0 i [ N s2/m ] c0 i [ Ns /m ] L0 i [N ] K μi [ N / A ] Zi [ Ω ]
1 88.08 467.20 45.50 124.76 10.00
2 97.90 631.00 54.80 200.22 15.00

Table 3: Control Parameters
Control Parameter 1st  axis 2nd axis

λ1i , λ2 i 80e4 ,1e3 80e4 ,1e3
γ1 i 0.9 0.9
λ i 80e2 80e2

η0 Ii
− 1 ,η1 Ii

−1 , η2 Ii
−1 , η3 Ii

−1 10 ,0.01 ,0.001 , 0.0001 10 , 0.01 ,0.001 , 0.0001
η0 pi

− 1 , η1 pi
−1 , η2 pi

−1 , η3 pi
− 1 60 ,0.06 , 0.006 , 0.0006 60 , 0.06 , 0.006 , 0.0006

β i 99 /101 99 /101

Figure  3 shows the absolute contour error
distribution  from Cheng  and  Lee  (2007),  a
butterfly  trajectory  tracking  task  using  two
different  control  strategies:  (a)  SO-RTSM
proposed by Deng et al.  (2020) and (b) the
Proposed method. Both subplots visualize the
error contour magnitude across the trajectory
path  in  3D,  with  the  color  map  code
indicating  the  error  scale  from  0 to

2.5 ×10− 3mm. As seen in Figure  3 (a), the
SO-RTSM  method  shows  relatively  higher
error  contour  magnitudes,  particularly  in
areas with high curvature or rapid directional
changes.  The  red  and  orange  areas  in  the

Figure  3 indicate  that  the  error  frequently
exceeds  1.5×10− 3mm,  suggesting
limitations  in  the  adaptability  of  this
controller.  In  contrast,  Figure  3 (b),
demonstrates  a  significant  improvement
using  the  proposed  control  approach  as
compared to SO-RTSM. The contour error is
consistently  lower,  with  most  of  the  path
maintaining values under 0.5×10− 3 mm as
indicated  by the dominance  of  green in  the
color  spectrum.  Only  minor  regions  exhibit
slight  increases  in  error,  but  these  remain
well below the peak values observed in the
SO-RTSM case.
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Figure 3: 3D Overall tracking performance 

Figure 4 shows a detailed comparison of the
SO-RTSM and Proposed control  over a 10-
second period for  both the first  and second
motion axes of  the butterfly  trajectory.  The
first and second row of plots shows that both
approaches  achieve  accurate  tracking across
the  entire  time  span,  without  noticeable
deviation.  In  the  third  row,  the  absolute
tracking  errors   |q i− qdi| for  both  axes
confirms  the  superior  precision  of  the
Proposed method, maintaining lower tracking
errors  mostly  below  1.5×10− 3 mm
throughout  the  10s duration,  while  the  SO-
RTSM  shows  spikes  fluctuations  reaching
over  5 ×10− 3mm,  particularly  towards  the

final  seconds of the simulation. Finally,  the
fourth  row  indicates  cumulative  energy
consumption  over  time,  the  energy
consumption is  described  and adopted from
Nshama et al. (2021): for the first axis, SO-
RTSM energy use rises steadily from 350 J to
over 400 J, while the Proposed method levels
off  around  375  J;  for  the  second  axis,  the
energy  savings  are  even  more  pronounced,
with  the  Proposed  method  consuming
approximately 30 J less by the end of the 10 s
period. These results highlight the Proposed
controller’s  advantage  in  achieving  more
accurate  tracking  with  smoother  control
signals  and reduced  energy  demands across
the full duration of the task under uncertainty
and external disturbances.
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Figure 4: Individual axis tracking and control input performance 

Figure  5 shows  adaptive  gains  used  to
compensate  for  disturbances  over  a  10-
second  duration,  comparing  the  SO-RTSM
and  Proposed  control  strategies  for  both
motion  axes.  It  is  evident  that  the  integral
gains  in  the  Proposed  method  remain
consistently  lower  than  those  in  the  SO-
RTSM approach across all components. This
difference can be attributed to the improved
tracking  accuracy  and  disturbance  rejection
capability of the Proposed controller,  which
requires  less  aggressive  adaptation  to
maintain  performance.  In  SO-RTSM,  the
larger tracking errors and less stable control

inputs as shown in Figure 4 third row, result
in  more  pronounced  disturbance  effects,
causing  the  adaptive  law  to  respond  with
significantly  higher  gain  values,  where
several  gain  terms  rapidly  increase.  In
contrast, the Proposed method achieves better
initial  tracking  and  disturbance  mitigation,
leading  to  slower  and  smoother  gain.  This
behavior  not  only  reflects  greater  energy-
saving  but  also  indicates  that  the  Proposed
method  relies  less  on  compensatory
adaptation, emphasizing its superior.
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Figure 5: Adaptive integral gains
The  proposed  controller  introduces  an

additional  set  of  adaptive  proportional
terminal  gains,  which  are  incorporated
alongside  the  existing  integral  gains,  these
gains  are  shown  in  Figure  6.  This
modification  represents  the  only  difference
from the  earlier  version  of  SO-RTSM. The
proportional  terminal gain follows a  power-
law  formulation,  similar  to  that  used  in
terminal  sliding  mode control  architecture,
enabling rapid convergence by amplifying the
corrective  action when the  tracking error  is
large, and gradually reducing it as the system
nears the target. This nonlinear gain behavior
significantly enhances the transient response;
the  controller  reacts  more  aggressively  to
deviations.  Proposed  method  with
proportional  terminal gain achieves superior
performance  using  less  overall  adaptation
effort,  benefiting  from  the  fast  finite-time
convergence  properties  characteristic  of

proportional terminal term while maintaining
smooth,  energy-saving.  The  finite-time
convergence  is  shown  in  the  Figure  7 for
which its described in the log scale in the 1
second  of  the  whole  trajectory,  comparing
SO-RTSM  and  the  proposed  method.  The
proposed  method  achieves  finite-time
convergence  at  around  0.077  seconds,
stabilizing to a lower contour error magnitude
more  quickly  and  consistently  than  SO-
RTSM,  which  converges  at  around  0.363
seconds. Table 4 compares  the  SO-RTSM
and  the  proposed  approach  in  terms  of
tracking  error,  energy  consumption,  and
convergence time for 2 axes of the feed drive
following butterfly  trajectory. The proposed
method outperforms SO-RTSM by achieving
significantly  lower  tracking  errors,  reduced
energy  consumption,  and  much  faster
convergence to steady-state.
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Figure 6: Proportional terminal gain
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Figure 7: Finite-time convergence
Table 4: Summary of the results as comparison between SO-RTSM and proposed approach
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Absolute average
tracking error [mm]

Average Energy
Consumption [J]

Time convergence to
steady state error [s]

Approache
s

1st axis 2nd axis 1st axis 2nd axis 1st axis 2nd axis

SO-RTSM 0.002351 0.001226 406.86 105.48 0.329 0.022
Proposed 0.000412 0.000478 382.66 95.28 0.010 0.008

Discussion
The superior  performance of the proposed

controller  over  the  SO-RTSM  can  be
attributed  to  several  key  design
enhancements.  The  inclusion  of  the
proportional  terminal  adaptive  gains  on  the
equations  (23)-(26)  enables  continuous
compensation  for  persistent  disturbances,
resulting in significantly reduced steady-state
tracking  errors.  Second,  the  proportional
terminal  gains  introduce  nonlinear  terminal
error  feedback  with  a  power  factor  that
amplifies  the  transient  performance  by
accelerating convergence during large initial
errors.  Unlike  SO-RTSM,  which  relies  on
high  gain  magnitudes  to  correct  deviations,
the  proposed  method  achieves  similar  or
better  accuracy  with  smoother  and  more
efficient  control  signals,  reducing  energy
consumption. The term |si|

βi in the equations
(23)-(26),  possess  a  non-linear  behaviour,
such  that  the  function  grows  more  slowly
when  si is large and becomes  more sharply
when  si is  small.  This  means  that  in  the
transient phase, the control effort is relatively
mild,  resulting  in  moderate  energy  used
compared to the case with  β i=1. However,

in the  steady-state region, where  si becomes

small,  the  term  |si|
βi it  becomes  relatively

large  near  the  origin,  which  causes  the
controller  to  continue  applying aggressive
control  effort  even when the error  is  small.
This  ensures  adaptation  and  errors  become
smaller.  Moreover,  the obtained results are
consistent  with  recent  studies  on  adaptive
control  approaches summarized  in Zhang et
al. (2021) as well  as Harada and Uchiyama
(2021),  which  similarly  reported  enhanced
convergence  rates  and  energy  efficiency
under  addition  of  proportional  term  in
feedback.

As future works, it is interesting to consider
including  fast  terminal  proportional  and
integral  terms  in  the  compensation  of  the
uncertainties  and  external  disturbances  and
consider improving contouring performance.
In addition, Figure 8 describes control inputs
from  both  methods,  with  only  small
deviations  visible  at  certain  peaks  and
transitions at 0-0.5, 3-4.5 and 8.5-10 seconds.
The  Proposed  approach  achieves  smoother
compared  to  the  SO-RTSM.  Overall,  the
Proposed  approach  appears  slightly  less
aggressive in high-frequency fluctuations.
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Figure 8: Control input comparison
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Conclusion
This study presents a novel adaptive control

framework for precision trajectory tracking in
biaxial  feed  drive  systems,  integrating
nonlinear adaptive proportional-integral gains
with recursive terminal sliding mode-inspired
dynamics. The proposed controller leverages
fractional power-based adaptation law on the
proportional  term,  enabling  faster
convergence  during  transients  and  minimal
control  effort  near  steady-state,  which
contributes  to  overall  energy-saving.
Furthermore,  finite-time  is  guaranteed.
Numerical  simulation  results  demonstrated
that the controller consistently achieves sub-
micron  tracking  accuracy,  with  smoother
control signals and up to 30 J energy savings
per axis over a 10-second butterfly trajectory.
The  introduction  of  proportional  terminal
gains  significantly  enhances  transient
performance  without  compromising  steady-
state accuracy, while maintaining stable gain
evolution.  Overall,  the  proposed  control
architecture  achieves  a  superior  balance
between speed, precision, and energy-saving,
making  it  well-suited  for  high-performance
industrial  motion  systems  requiring  both
accuracy and sustainable operation.
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